ردیابی غیرفعال هدف مانور بالا با استفاده از مشاهدات سمت به روش فیلتر برهم‌کنشی چندمدلی کالمن حجم مکعبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 دانشیار ، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 استادیار ، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

ردیابی تنها با مشاهدات سمت (BOT)، احتمال شناسایی شدن توسط طرف مقابل را به دلیل غیر‌فعال بودن مشاهدات به حداقل می‌رساند. ردیابی اهداف متحرک در زیر آب، توسط زیردریایی، مستلزم استفاده زنجیره‌ای از مشاهده غیرفعال زاویه هدف در طول زمان می‌باشد. در این حالت، بهبود تخمین موقعیت هدف در گرو مانور مناسب زیردریایی برای افزایش مشاهده‌پذیری است. همچنین، از آنجایی‌که حرکت هدف می‌تواند دارای مدل‌های متفاوتی باشد، بایستی از فیلتر‌های چندگانه برهم‌کنشی (IMM) برای بهبود دقت ردیابی اهداف مانوردار استفاده کرد. از سوی دیگر، به علت غیرخطی بودن معادلات اندازه‌گیری و معادلات حرکت هدف، بهتر است از فیلتر کالمن حجم مکعبی (CKF) برای بهبود دقت ردیابی استفاده کرد. در این مقاله از فیلتر IMM-CKF برای ردیابی هدف مانور بالا که در مقاطع مختلف حرکت خود از دینامیک‌های مختلف استفاده می‌کند، در شرایطی که در هر لحظه تنها یک مشاهده سمت از آن وجود دارد، استفاده می‌شود. نتایج شبیه‌سازی روش پیشنهادی و مقایسه آن با فیلترهای برهم‌کنشی چندمدلی کالمن توسعه‌یافته و خنثی و همچنین فیلتر نوین کالمن شبه‌ خطی (PLKF) نشان می‌دهد که در قسمت‌هایی از حرکت که دارای مانور‌های شدیدی است، IMM-CKF عملکرد مناسب‌تری نسبت به سایر روش‌ها دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Interacting Multiple Model Cubature Kalman Filter for Highly Maneuverable Target Tracking Using BOT

نویسندگان [English]

  • Mohsen Ebrahimi 1
  • Seyyed M. Mehdi Dehghan 2
  • Firouz Allahverdizade 3
1 PhD student, Malek Ashtar University of Technology, Tehran, Iran
2 Associate Professor, Malek Ashtar University of Technology, Tehran, Iran
3 Assistant Professor, Malik Ashtar University of Technology, Tehran, Iran
چکیده [English]

The BOT method, minimizes the possibility of detection by the other party due to its inactivity. Tracking of moving underwater targets, by submarines, requires the use of a chain of passive target observation over time. In this case, the improvement of the target estimation depends on the proper maneuver of the submarine to increase the observability. Also since the moving target can have different models, Interactive Multiple Model (IMM) should be used to improve the tracking accuracy of maneuvering targets. On the other hand, due to the non-linearity of the measurement equations and the target motion equations, it is better to use the Cubature Kalman Filter (CKF) to improve the tracking accuracy. In this article, the IMM-CKF filter is used to track the highly maneuverable target in a situation where there is only one observation of it at any moment. The simulation results of the proposed method and its comparison with the extended and unscented multi-model Kalman interaction filters as well as the new pseudo-linear Kalman filter (PLKF) show that the performance of IMM-CKF is suitable in parts of the movement that have intense maneuvers. It is better than other methods

کلیدواژه‌ها [English]

  • Cubature Kalman filter
  • interacting multiple model
  • Bearing Only Tracking
  • target tracking

Smiley face

[1]
Y. Li et al. “A passive detection and tracking divers method based on energy detection and EKF algorithm”, Cluster Computing, vol. 7, pp. 1–10. Sep, 2017.
https://doi.org/10.1007/s10586-017-1397-z.
[2]
S. M. Zabihi Madah, and S. A. Seyedin, “Estimation of moving ground target parameters in single-antenna loop artificial aperture radar”. Radar, vol. 4, no. 4, pp. 49-63, 2015. [in persian]
[3]
J. Su, Y.A. Li, and W. Ali, “Underwater angle-only tracking with propagation delay and time-offset between observers”. Signal Proces, vol. 176, p. 107581, 2020. https://doi.org/10.1016/j.sigpro.2020.107581.
[4]
M. Golabi, A. Sheikhi, and M. Biguesh, “Target Localization by One Element Reciever Using Frequency Diverse Array Radars”. Radar, vol. 8, no. 2, pp. 97-109, 2020. [in persian]
20.1001.1.23454024.1399.8.2.10.7.
[5]
A.G. Lingren, and K.F. Gong, “Position and Velocity Estimation Via Bearing Observations”. IEEE Trans. Aerosp. Electron. Syst, AES, vol. 14, pp. 564–577, 1978. https://doi.org/10.1109/TAES.1978.308681.
[6]
B. Liu, et al. Underwater Target Tracking in Uncertain Multipath Ocean Environments. IEEE Trans. Aerosp. Electron. Syst, vol. 56, pp. 4899–4915, 2020.
https://doi.org/10.1109/TAES.2020.3003703.
[7]
B.O.L. Jagan, and S.K. Rao, “Underwater surveillance in non-Gaussian noisy environment”. Meas. Control, vol. 53, pp. 250–261, 2020.
https://doi.org/10.1177/0020294019877515.
[8]
S. Xu, K. Do˘gançay, and H. Hmam, “3D AOA target tracking using distributed sensors with multi-hop information sharing”. Signal Process, vol. 144, pp. 192–200, 2018.
https://doi.org/10.1016/j.sigpro.2017.10.014.
[9]
S. Xu, K. Do˘gançay, and H. Hmam, “Distributed pseudolinear estimation and UAV path optimization for 3D AOA target tracking”. Signal Process, vol. 133, pp. 64–78, 2017.
https://doi.org/10.1016/j.sigpro.2016.10.012.
[10]
L. He, P. Gong, X. Zhang, and Z. Wang, “The Bearing-Only Target localization via the Single UAV: Asymptotically Unbiased Closed-Form Solution and Path Planning”. IEEE Access, vol. 7, pp. 153592–153604, 2019. 10.1109/ACCESS.2019.2947455.
[11]
A. Rutkowski, and A. Kawalec, “Some of Problems of Direction Finding of Ground-Based Radars Using Monopulse Location System Installed on Unmanned Aerial Vehicle”. Sensor, vol. 20, p. 5186, 2018.
https://doi.org/10.3390/s20185186.
[12]
D.T. Pham, “Some quick and efficient methods for bearing-only target motion analysis”. IEEE Trans. Signal Process, vol. 41, pp. 2737–2751, 1993.
https://doi.org/10.1109/78.236499.
[13]
Zo. Alavi panah, S. Vahid, N. Zarei, and MM. Golmahaleh, “discrimination of sea chaff in search mode based on deep learning algorithm”. Radar, vol. 10, no. 1, 2023. [in persian]
[14]
J. Kim, T. Suh, and J. Ryu, “Bearings-only target motion analysis of a highly manoeuvring target”. IET Radar Sonar Navig, vol. 11, pp. 1011–1019, 2017.
https://doi.org/10.1049/iet-rsn.2016.0455.
[15]
H. Wu, S. Chen, B. Yang, and K. Chen, “Robust Derivative-Free Cubature Kalman Filter for Bearings-Only Tracking”. J. Guid. Control Dyn. vol. 39, pp. 1865–1870, 2016. https://doi.org/10.2514/1.G001686.
[16]
B. Ristic, J. Houssineau, and S. Arulampalam, “Robust target motion analysis using the possibility particle filter”. IET Radar Sonar Navig, vol. 13, pp. 18–22, 2018. https://doi.org/10.1049/iet-rsn.2018.5144.
[17]
H.W. Zhang, and W.X. Xie, “Constrained auxiliary particle filtering for bearings-only maneuvering target tracking”. J. Syst. Eng. Electron, vol. 30, pp. 684–695, 2019. https://doi.org/10.21629/JSEE.2019.04.06.
[18]
Z. Ayham, S. Thomas, and D.A. Shannon, “Optimal Shadowing Filter for a Positioning and Tracking Methodology with Limited Information”. Sensors, vol. 19, 931, 2019. https://doi.org/10.3390/s19040931.
[19]
M. Ebrahimi, AF. Ehyaei, “Bearing only tracking for maneuver target using nonlinear second-order Markov model”. Journal of Space Science and Technology, vol. 15, no. 53, pp.11-22, 2022. [in persian]
10.30699/JSST.2022.1361
[20]
C. Chen, W. Zhou, L. Gao, “A novel robust IMM filter for jump Markov systems with heavy-tailed process and measurement noises”. Digital Signal Processing, pp.104003, 2023.
https://doi.org/10.1016/j.dsp.2023.104003.
[21]
DJ. Jwo, JH. Lai, and Y. Chang, “Interacting Multiple Model Filter with a Maximum Correntropy Criterion for GPS Navigation Processing”. Applied Sciences. vol. 13, no. 3, pp. 1782, 2023.
 https://doi.org/10.3390/app13031782.
[22]
X. Wei, B. Hua, Y. Wu, and Z, Chen. “A Pearson-type VII Distribution with Adaptive Parameters Selection Based Interacting Multiple Model Kalman Filter”. IEEE Transactions on Circuits and Systems II: Express Briefs. 2023. 
https://doi.org/10.1109/TCSII.2023.3252597.
[23]
A.E. Arslan, “Range Parameterized Bearings Only Tracking Using Particle Filter.” Ph.D. - Doctoral Program, Middle East Technical University, 2012.
[24]
H. Li, L. Yan, Y. Xia, and J. Zhang. “Distributed multiple model filtering for markov jump systems with communication delays. Journal of the Franklin Institute”. Vol. 360, no. 4, pp.3407-35, 2023 Mar.
https://doi.org/10.1016/j.jfranklin.2022.11.019.
[25]
M. Ebrahimi, M. Ardeshiri, SA. Khanghah, “Bearing-only 2D maneuvering target tracking using smart interacting multiple model filter”. Digital Signal Processing. Vol. 126, pp.103497, 2022 Jun 30.
 https://doi.org/10.1016/j.dsp.2022.103497.
[26]
Y. Wang et al. “Dynamic propagation characteristics estimation and tracking based on an EM-EKF algorithm in time-variant MIMO channel”, Inf. Sci. vol. 408, pp. 70–83, Oct, 2017.
https://doi.org/10.1016/j.ins.2017.04.035.
[27]
H. Chen et al. “The Tracking Estimation of Maneuvering UAVs Based on Enhanced Convergence IMM-EKF”. InProceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022) ,pp. 2591-2600, 2023. 
https://doi.org/10.1007/978-981-99-0479-2_239.
[28]
I. Arasaratnam and S. Haykin, ‘‘Cubature Kalman filters,’’ IEEE Trans. Autom. Control, vol. 54, no. 6, pp. 1254–1269, 2009.
https://doi.org/10.1109/TAC.2009.2019800.
[29]
Q. Ge, D. Xu, and C. Wen, ‘‘Cubature information filters with correlated noises and their applications in decentralized fusion,’’ Signal Process. vol. 94, pp. 434–444, 2014. https://doi.org/10.1016/j.sigpro.2013.06.015
[30]
J. Salem; M. Zaighami and M. Alavi. "Modeling the trajectory of LEO satellites and their tracking with extended Kalman filter (EKF) and sampled Kalman filter (UKF)". Radar, vol. 2, pp. 2-9, 2013. [in persian]
20.1001.1.23454024.1399.8.2.10.7
[31]
R. Song, X. Chen, Y. Fang, and H. Huang. “Integrated navigation of GPS/INS based on fusion of recursive maximum likelihood IMM and square-root cubature Kalman filter”. ISA transactions. pp. 105:387-95, 2020.
https://doi.org/10.1016/j.isatra.2020.05.049
[32]
W. Zhu, W. Wang, and G. Yuan, “An improved interacting multiple model filtering algorithm based on the cubature Kalman filter for maneuvering target tracking”, Sensors. vol. 16, no. 6, p. 805, 2016. 
https://doi.org/10.3390/s16060805
[33]
H. Liu, and W. Wu, “Interacting multiple model (IMM) fifth-degree spherical simplex-radial cubature Kalman filter for maneuvering target tracking”. Sensors. vol. 17, no. 6, p. 1374, Jun 2017.
 https://doi.org/10.3390/s17061374
[34]
M. Wan, P. Li, and T. Li. "Tracking maneuvering target with angle-only measurements using IMM algorithm based on CKF." In 2010 International conference on communications and mobile computing, vol. 3, pp. 92-96. IEEE, 2010. https://doi.org/10.1109/CMC.2010.239
[35]
Z. Huang, S. Chen, and C. Hao, “Orlando, D. Bearings-Only Target Tracking with an Unbiased PseudoLinear Kalman Filter”. Remote Sens, vol. 13, p. 2915, 2021.
https://doi.org/10.3390/rs13152915
دوره 11، شماره 1
شماره پیاپی 29، فصلنامه بهار و تابستان
شهریور 1402
  • تاریخ دریافت: 21 اردیبهشت 1402
  • تاریخ بازنگری: 25 تیر 1402
  • تاریخ پذیرش: 11 مرداد 1402
  • تاریخ انتشار: 01 شهریور 1402