طراحی کد رادار جهت بهینه سازی آشکارسازی، تحت قید خودبستگی سفید شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

شکل موج ارسالی رادار، یکی از فاکتورهای تاثیرگذار در عملکرد آشکارسازی اهداف است که در توسعه رادارهای شناختگر بسیار مهم می‌باشد. در این مقاله، روش ارسال تطبیقی مورد بررسی قرار می گیرد که به طور خاص به طراحی تطبیقی شکل موج ارسالی رادار جهت بیشینه کردن سیگنال به تداخل (و به تبع آن آشکارسازی) می پردازد. شکل موج ارسالی در کلاس کدهای خطی بین پالسی فرض شده و عملکرد آن در حضور تداخل رنگی گوسی مورد بررسی قرار می‌گیرد. مقالات متعددی به طراحی این دسته از کدها پرداخته اند. لیکن نکته ای که در همه این مقالات مغفول مانده است این است که قید شباهت تابع همبستگی بایستی بعد از فیلتر سفیدکننده گیرنده نوشته شود تا سیگنال سفیدشده با تابع همبستگی مناسب به فیلتر منطبق وارد شود. در این مقاله، ضمن معرفی قید خودبستگی سفیدشده، الگوریتمی برای حل مساله طراحی شکل موج حاصل پیشنهاد شده است. روش فوق، روش جریمه تدریجی نامگذاری شده است ونشان داده شده است که دارای پیچیدگی محاسباتی چندجمله ای است. سپس همگرایی الگوریتم ارائه شده اثبات شده و در نهایت با شبیه سازی، عملکرد بهتر کد طراحی شده با روش پیشنهادی نسبت به کدهای طراحی شده با روشهای موجود نشان داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Radar Code Design Framework with Whitened Autocorrelation Constraint

نویسندگان [English]

  • pirouz Majdoleshrafi 1
  • mehrdad ardebilipour 2
1 PhD student,K.N. Toosi University, Tehran, Iran
2 Associate Professor K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Transmitted signal waveform is among the most interesting factors affecting the radar system performance which is important to the development of cognitive radars. In this paper, the problem of adaptive waveform design is studied which specially addresses the waveforms that maximize the signal-to-disturbance ratio that finally leads to an increased probability of detection. The coded waveform is analysed in the class of linear inter-pulse coding and studied in the presence of coloured Gaussian disturbance. For this end, a new framework is introduced that leads to the design of an adaptive radar code in accordance with background distribution covariance matrix under a control on the region of available signal energy, achievable estimation accuracies and imposing a similarity constraint on the devised code periodic autocorrelation function. It is shown that the autocorrelation similarity constraint should be assessed after the whitening process in the optimum receiver. In more details, first waveform design is expressed as a non-convex quadratic optimization problem with a new autocorrelation (ACF) constraint in the whitened domain and then the optimization problem is solved by an innovative iterative algorithm named as GPP (Gradually Penalizing programming) with polynomial computational complexity. It is shown that the convergence of the algorithm is guaranteed and despite considering the suitability constraints of the ACF, improved detection performance can be achieved compared to other code synthesis methods.

کلیدواژه‌ها [English]

  • Radar Waveform Design
  • Cognitive Radar
  • Whitened Autocorrelation similarity constraint
  • Convex Optimization
  • Gradually Penalizing Programming

Smiley face

  1. Cui, A. DeMaio, A. Farina, and J. Li, Radar Waveform Design Based on Optimization Theory. SciTech Publishing, 2020.
  2. Haykin, Cognitive dynamic systems: perception-action cycle, radar and radio. Cambridge University Press, 2012.
  3. Farina, S. Haykin, and A. De Maio, The impact of cognition on radar technology. Institution of Engineering & Technology, 2017.
  4. Guerci, Cognitive Radar: The Knowledge-aided Fully Adaptive Approach (Artech House radar library). Artech House, 2010.
  5. Gini, A. De Maio, and L. Patton, Waveform design and diversity for advanced radar systems. Institution of engineering and technology London, 2012.
  6. Wicks and E. Mokole, Principles of waveform diversity and design. The Institution of Engineering and Technology, 2011.
  7. He, J. Li, and P. Stoica, Waveform design for active sensing systems: a computational approach. Cambridge University Press, 2012.
  8. Levanon, "Inter-pulse coding for ideal range response," presented at the Microwaves, Communications, Antennas and Electronic Systems, IEEE International Conference on, Tel-Aviv, Israel, 2008.
  9. De Maio, S. De Nicola, Y. Huang, S. Zhang, and A. Farina, "Code design to optimize radar detection performance under accuracy and similarity constraints," IEEE Transactions on Signal Processing, vol. 56, no. 11, pp. 5618-5629, 2008.
  10. De Maio, Y. Huang, and M. Piezzo, "A Doppler robust max-min approach to radar code design," IEEE transactions on signal processing, vol. 58, no. 9, pp. 4943-4947, 2010.
  11. De Maio, Y. Huang, M. Piezzo, S. Zhang, and A. Farina, "Design of optimized radar codes with a peak to average power ratio constraint," IEEE Transactions on Signal Processing, vol. 59, no. 6, pp. 2683-2697, 2011.
  12. Cui, H. Li, and M. Rangaswamy, "MIMO radar waveform design with constant modulus and similarity constraints," IEEE Transactions on signal processing, vol. 62, no. 2, pp. 343-353, 2014.
  13. Majdolashrafi, M. ArdebiliPour, and M. Ghasimi, "Radar code design to optimise detection under whitened similarity constraint," IET Radar, Sonar & Navigation, 2020.
  14. Zhongtao, H. Zishu, L. Kun, and C. Xuyuan, "Optimal receive filter design under similarity constraint in coloured noise," IET Radar, Sonar & Navigation, vol. 9, no. 7, pp. 888-899, 2015.
  15. M. N. Karbasi, Mohammad Mehdi; Masjedi, Maryam ; Bastani,Mohammad Hassan, "Transmit Code Design for Detection of an Extended Target Embedded in Signal-Dependent Interference," IHU Radar Journal, vol. 6, no. 2, pp. 59-71, 2019 (In Persian).
  16. Jing, J. Liang, D. Zhou, and H. C. So, "Spectrally Constrained Unimodular Sequence Design without Spectral Level Mask," IEEE Signal Processing Letters, 2018.
  17. Fan, J. Liang, G. Lu, X. Fan, and H. C. So, "Spectrally-agile waveform design for wideband MIMO radar transmit beampattern synthesis via majorization-ADMM," IEEE Transactions on Signal Processing, 2021.
  18. M. Feraidooni, M. Alaee-Kerahroodi, S. Imani, and D. Gharavian, "Designing Set of Binary Sequences and Space-Time Receive Filter for Moving Targets in Colocated MIMO Radar Systems," presented at the 20th International Radar Symposium (IRS), 2019.
  19. Shi, Z. He, and Z. Wang, "Joint design of transmitting waveforms and receiving filter for MIMO-STAP airborne radar," Circuits, Systems, and Signal Processing, vol. 39, no. 3, pp. 1489-1508, 2020.
  20. Tang, J. Tuck, and P. Stoica, "Polyphase waveform design for MIMO radar space time adaptive processing," IEEE Transactions on Signal Processing, vol. 68, pp. 21-43, 2020.
  21. F. Sturm, "Implementation of interior point methods for mixed semidefinite and second order cone optimization problems," Optimization Methods and Software, vol. 17, no. 6, pp. 1105-1154, 2002.
  22. Nocedal and S. Wright, Numerical optimization, second ed. Springer Science, theoram 173, 2006...
  23. R. Conn, N. I. Gould, and P. L. Toint, Trust region methods. SIAM, 2000.
  24. D. Tao, "The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems," Annals of operations research, vol. 133, no. 4, pp. 23-46, 2005.
  25. S. Handcock and M. L. Stein, "A Bayesian analysis of kriging," Technometrics, vol. 35, no. 4, pp. 403-410, 1993.
  26. Song, P. Babu, and D. P. Palomar, "Sequence design to minimize the weighted integrated and peak sidelobe levels," IEEE Transactions on Signal Processing, vol. 64, no. 8, pp. 2051-2064, 2016.
دوره 10، شماره 1 - شماره پیاپی 27
شماره پیاپی 27، فصلنامه بهار و تابستان
تیر 1401
صفحه 1-11
  • تاریخ دریافت: 09 فروردین 1401
  • تاریخ بازنگری: 02 مرداد 1401
  • تاریخ پذیرش: 29 مرداد 1401
  • تاریخ انتشار: 30 شهریور 1401