تنک‌سازی آنتن آرایه‌‌ای با استفاده از بهینه‌سازی محدب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه جامع امام حسین (ع)، تهران، ایران

2 استادیار، دانشگاه جامع امام حسین (ع)، تهران، ایران

چکیده

طراحی آرایه‌های تنک که می‌توانند الگوهای تشعشعی مورد نظر را با حداقل تعداد عناصر ایجاد کنند، یک حوزه تحقیقاتی مورد علاقه است. مسئله سنتز آرایه‌های تنک را می‌توان با محدودیت‌های مناسب بر روی اندازه‌ی تعداد عضوهای فضای حل، یعنی نُرم صفر وزن‌های عناصر آرایه مدلسازی کرد، اما چنین محدودیت غیرمحدبی، نیاز به حل مسئله چند جمله‌ای غیرتصادفی سخت دارد. ایده‌های جالبی برای آرام‌سازی محدودیت ذکر شده به صورت محدب پیشنهاد شده است. یک راه حل ممکن بر اساس حداقل‌سازی نُرم یک است؛ الگوریتم‌ استفاده شده در اینجا، ابتدا الگوی تشعشعی بهینه را با استفاده از بهینه‌سازی محدب تعیین می‌کند، سپس با استفاده از وزن‌دهی مجدد نرم یک، آرایه پراکنده را با حذف آن دسته از عناصری که وزن تقریبا صفر دارند، بدست آورده و موقعیت المان‌ها را به صورت بهینه مشخص می‌کند؛ در نتیجه با حل مشکل عدم تحدب مسئله، راه‌حل بهینه با زمان محاسباتی معقول ارائه می‌شود. هدف روش بهینه‌سازی ارائه شده، به حداقل رساندن تعداد عناصر، رعایت قیود مربوط به الزامات الگوی تشعشعی و کاهش زمان محاسبه است. این تحقیق در مطالعه موردی خود، توانسته با تنظیم پارامتر‌های مربوطه از جمله DRR، γ و ε، آرایه ۱۱×۱۱ (۱۲۱ عنصر) را به ۴۲ (با افزایش حداکثر سطح گلبرگ فرعی) و ۳۷ عنصر (با افزایش پهنای گلبرگ اصلی) تنک‌سازی کند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Sparse Array via Convex Optimization

نویسندگان [English]

  • Hossein Eshaghi 1
  • mortaza sepahvand 2
1 Master's student, Imam Hossein University (AS), Tehran, Iran
2 Assistant Professor, Imam Hossein University (AS), Tehran, Iran
چکیده [English]

Design of sparse array antenna that can create the desired radiation patterns with minimum number of elements, is a favorite research area. The synthesis sparse array problem can be modeled with appropriate constraints on the number of solve space members, namely l_0-norm of the weight elements. But it is a non-convex problem that requires to solving a NP-hard problem. An interesting ideas is mentioned to relax problem to convex problem. The proposed solution is based l_1-norm; The algorithm used here, first determines the optimal radiation pattern with convex optimization. then by using iterative weighting l_1-norm, sparse array is obtained by removing those elements that weights of them are almost zero and optimally determines the position of the element. As a result, by solving the non-convexity property of the problem, the optimal solution is provided with a reasonable computational time. The purpose of the optimization method is to minimize the number of elements, observe the constraints related to the requirements of the radiation pattern and reduce the calculation time. This research, in its case study, was able to sparse the 11×11 array (121 elements) to 42 elements (increase PSL) and 37 elements (increase mainlobe beamwidth) by adjusting the relevant parameters such as DRR, γ and ε.

کلیدواژه‌ها [English]

  • Array antenna
  • Sparsity
  • Convex Optimization
  • Radiation Pattern

Smiley face

[1]    G. Mohal, J. Kaur & A. Kaur, "Radiation pattern analysis and synthesis of antenna arrays using convex optimization," International Journal of Electronics Engineering, vol. 2, no. 2, pp. 279-282, 2010. 
[2]    H. Lebret & S. Boyd, "Antenna array pattern synthesis via convex optimization," IEEE transactions on signal processing, vol. 45, no. 3, pp. 526-532, 1997. 
[3]    S. A. Schelkunoff, "A mathematical theory of linear arrays," The Bell System Technical Journal, vol. 22, no. 1, pp. 80-107, 1943. 
[4]    B. Fuchs, "On the use of Convex Optimization for Array Synthesis Problems," in 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2019. 
[5]    M. Nasri & D. Zarifi, "Design and Simulation of Waveguide Rotary Joint Based on Gap Waveguide Technology for 60 GHz Applications," Scientific Journal of Radar, vol. 8, no. 2, pp. 73-78, 2020. 
[6]    B. Fuchs & S. Rondineau, "Array pattern synthesis with excitation control via norm minimization," IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4228-4234, 2016. 
[7]    Fateme Asgari & F. Forohar, "Array Geometry Optimization for Beamforming in Smart Antenna Systems," Scientific Journal of Applied Electromagnetics, vol. 1, no. 1, pp. 9-18, 2015.
[8]    L. Cen, W. Ser, W. Cen & Z. L. Yu, "Linear sparse array synthesis via convex optimization," in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, 2010. 
[9]    Y. Liu, Z. Nie & Q. H. Liu, "Reducing the number of elements in a linear antenna array by the matrix pencil method," IEEE Transactions on Antennas and Propagation, vol. 56, no. 9, pp. 2955-2962, 2008. 
[10]  K. Chen, H. Chen, L. Wang & H. Wu, "Modified real GA for the synthesis of sparse planar circular arrays," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 274-277, 2015.
[11]  K. V. Deligkaris, Z. D. Zaharis, D. G. Kampitaki, S. K. Goudos, I. T. Rekanos & M. N. Spasos, "Thinned planar array design using Boolean PSO with velocity mutation," IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1490-1493, 2009.
[12]  V. Murino, A. Trucco & C. S. Regazzoni, "Synthesis of unequally spaced arrays by simulated annealing," IEEE Transactions on signal processing, vol. 44, no. 1, pp. 119-122, 1996. 
[13]  O. Quevedo-Teruel & E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 349-352, 2006. 
[14]  D. Pinchera, M. D. Migliore, F. Schettino, M. Lucido & G. Panariello, "An effective compressed-sensing inspired deterministic algorithm for sparse array synthesis," IEEE Transactions on Antennas and Propagation, vol. 66, no. 1, pp. 149-159, 2017. 
[15]  D. G. Kurup, M. Himdi & A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Transactions on Antennas and Propagation, vol. 51, no. 9, pp. 2210-2217, 2003.
[16]  S. Boyd, S. P. Boyd & L. Vandenberghe, Convex optimization, Cambridge university press, 2004.
[17]  "University of Toronto: Electromagnetics Group," University of Toronto, 2016. [Online]. Available: https://www.waves.utoronto.ca/prof/svhum/ece422/notes/15-arrays2.pdf.
[18]  V. Jain, "Zero-norm optimization: Models and applications," 2010. 
[19]  C. Bencivenni, "Sparse array synthesis of complex antenna elements," Chalmers Tekniska Hogskola (Sweden), 2015.
[20]  S. E. Nai, W. Ser, Z. L. Yu & H. Chen, "Beampattern synthesis for linear and planar arrays with antenna selection by convex optimization," IEEE Transactions on Antennas and Propagation, vol. 58, no. 12, pp. 3923-3930, 2010.
[21]  E. J. Candes, M. B. Wakin & S. P. Boyd, "Enhancing sparsity by reweighted ℓ 1 minimization," Journal of Fourier analysis and applications, vol. 14, no. 5, pp. 877-905, 2008.
[22]  G. Prisco & M. D'Urso, "Maximally sparse arrays via sequential convex optimizations," IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 192-195, 2012.
[23]  M. C. Grant & S. P. Boyd, "The CVX users’ guide release 2.2," CVX Research Inc, 2020.
[24]  M. Comisso & R. Vescovo, "Fast co-polar and cross-polar 3D pattern synthesis with dynamic range ratio reduction for conformal antenna arrays," IEEE Transactions on Antennas and Propagation, vol. 61, no. 2, pp. 614-626, 2012. 
[25]  M. Comisso & R. Vescovo, "3D power synthesis with reduction of near-field and dynamic range ratio for conformal antenna arrays," IEEE Transactions on Antennas and Propagation}, vol. 59, no. 4, pp. 1164-1174, 2011.
[26]  R. Vescovo, "Reconfigurability and beam scanning with phase-only control for antenna arrays," IEEE Transactions on Antennas and Propagation, vol. 56, no. 6, pp. 1555-1565, 2008.
[27]  R. Vescovo, "Consistency of constraints on nulls and on dynamic range ratio in pattern synthesis for antenna arrays," IEEE Transactions on Antennas and Propagation, vol. 55, no. 10, pp. 2662-2670, 2007.
[28]  Fan, J. Liang, Y. Zhang, H. So & X. Zhao, "Shaped power pattern synthesis with minimization of dynamic range ratio," IEEE Transactions on Antennas and Propagation, vol. 67, no. 5, pp. 3067-3078, 2019. 
[29]  B. Fuchs & S. Rondineau, "Array pattern synthesis with excitation control via norm minimization," IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4228-4234, 2016
[30]  Z. Xu, Y. Liu, M. Li & Y. Li, "Linearly polarized shaped power pattern synthesis with dynamic range ratio control for arbitrary antenna arrays," IEEE Access, vol. 7, pp. 53621-53628, 2019.
[31]  R. Gholami, B. Zakeri, H. Abedi & S. Mohseni, "Reduction of dynamic range ratio through competition over resources to synthesize planar array antennas," AEU-International Journal of Electronics and Communications, vol. 70, no. 11, pp. 1522-1531, 2016.
[32]  X. Fan, J. Liang, Y. Jing, H. So, Q. Geng & X. Zhao, "Sum/Difference Pattern Synthesis with Dynamic Range Ratio Control for Arbitrary Arrays," IEEE Transactions on Antennas and Propagation, 2021.
[33]  X. Fan, J. Liang & H. C. So, "Beampattern synthesis with minimal dynamic range ratio," Signal Processing, vol. 152, pp. 411-416, 2018. 
[34]  H. L. Van Trees, "Optimum array processing: Part iv of detection," Estimation, and Modulation Theory, 2002.
[35]  M. D’Urso, G. Prisco & R. M. Tumolo, "Maximally sparse, steerable, and nonsuperdirective array antennas via convex optimizations," IEEE Transactions on Antennas and Propagation, vol. 64, no. 9, pp. 3840-3849, 2016.
[36]  C. Yan, P. Yang, Z. Xing & S. Y. Huang, "Synthesis of planar sparse arrays with minimum spacing constraint," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 6, pp. 1095-1098, 2018
[37]  V. Chekka, "https://towardsdatascience.com," towards data science, 30 August 2018. [Online]. Available:https://towardsdatascience.com/regularization-in-machine-learning-connecting-the-dots-c6e030bfaddd. [Accessed 1 January 2021].
دوره 9، شماره 2 - شماره پیاپی 26
شماره پیاپی26، فصلنامه پاییز و زمستان
آذر 1401
صفحه 89-98
  • تاریخ دریافت: 05 بهمن 1400
  • تاریخ بازنگری: 12 مهر 1401
  • تاریخ پذیرش: 24 مهر 1401
  • تاریخ انتشار: 01 آذر 1401