محاسبه تهدید تلفیقی اهداف هوایی مبتنی بر شبکه های عصبی-فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدرس، دانشگاه پدافند هوایی خاتم‌الانبیاء(ص)، تهران، ایران

2 استادیار، دانشگاه پدافند هوایی خاتم‌الانبیاء(ص)، تهران، ایران

چکیده

در سال‌های اخیر، شبکه‌های هوشمند نقش بسزایی در زمینه‌های مختلف نظامی ایفا کرده و به مرور جایگزین اپراتورهای انسانی در سیستم‌های نوین نظامی می‌شوند. ارزیابی تهدید اهداف پرنده در سامانه‌های فرماندهی و کنترل توسط اپراتورهای خبره بر اساس دانش و تجربه انجام می‌پذیرد. تجزیه و تحلیل اطلاعات ورودی دریافتی از سیستم‌های تلفیق داده امری بسیار دشوار است که نیازمند تصمیم‌گیری‌های پیچیده‌ای می‌باشد. توانایی بالا و دقت سیستم‌های هوشمند به منظور پیش‌بینی تهدید اهداف پرنده بر اساس پارامترهای مختلف دریافتی، کمک شایانی در تصمیم‌گیری نهایی می‌کند. در این مقاله از یک مدل رگرسیون شبکه عصبی و فازی استفاده گردیده است، تا بتوان اولویت تهدید اهداف متحرک برای سامانه فرماندهی و کنترل به صورت هوشمند و لحظه‌ای تعیین گردد. خطای شبکه عصبی و ANFIS آموزش دیده برای داده‌های تست به ترتیب برابر 14/4% و 65/1% درصد می‌باشد که نشان از توانایی بالای این ساختارها در تخمین تهدید اهداف پرنده دارد. علاوه بر این روابط بین متغیرهای هدف و میزان تهدید نیز مورد بررسی قرار گرفت. در نهایت یک صحنه نبرد پویا با اهداف هوایی مختلف شبیه‌سازی گردید و مدل توسعه داده شده مورد سنجش قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Calculation of the Combined Threat of Air Targets Using Neuro-Fuzzy Systems

نویسندگان [English]

  • Hamid Mohseni 1
  • Mehdi Najafzadeh 1
  • majid zarie 2
  • Ali Jahed Saravania 2
  • Saeid Zare 1
1 Lecturer, Khatam Al-Anbia University of Air Defense, Tehran, Iran
2 Assistant Professor, Khatam Al-Anbia University of Air Defense, Tehran, Iran
چکیده [English]

In recent years, intelligent structures play the key role in different military fields and take the place of human operators in novel armed services step by step. Threat evaluation of flying air targets in command and control systems is performed by expert operators through their knowledge and experience. Analysis of input data in the data-fusion systems is a very difficult task requiring complicated decision. Capability and accuracy of intelligent systems for threat prediction of flying air targets base on different received parameters can be a great assist in final macking decision. In this study, a neural network and ANFIS regression models are used to determine the priority of the threat of flying air targets in the command and control systems intelligently and instantly. The error of trained neural network and ANFIS for test dataset are 4.14% and 1.65%, respectively indicating superior ability of these structures in threat estimation of flying air targets. Furthermore, relationships among target variables and threat level is studied. Finally, a dynamic battle scene with different flying air targets is simulated and developed moled is validated.

کلیدواژه‌ها [English]

  • Threat evaluation
  • Flying air targets
  • Neural networks and ANFIS

Smiley face

[1]    Z.D. Xu, Y.Q. Guo, J.T. Juo, X.C. Zhung, “Intelligent Vibration Control in Civil Engineering Structures”, Sciencedirect , ISBN: 978-0-12-405874-3, 2015.
[2]    S.N. Vassilyev, A.Yu. Kelina, Y.I. Kudinov, F.F. Pashchenko, “Intelligent control systems”, XIIth International Symposium «Intelligent Systems», INTELS’16, 5-7 October 2016, Moscow Russia, Procedia Computer Science 103, pp. 623-628, 2017.
[3]    Y. Zhao, “Intelligent Control Technology Application Based on Wireless Sensor Networks,” JDCTA, Vol. 6, No. 23, doi: 10.4156/jdcta.vol6.issue23.10, 2012.
[4]    S.M. Grath, D. Chacon, K. Whitebread, “Intelligent Mobile Agents in Military Command and Control,” http://www.airuniversity.af.mil/ website.
[5]    O. Aissa, S. Moulahoum, I. Colak, B. Babes, N. Kabache, “Design and Real Time Implementation of Three-Phase Three Switches Three Levels Vienna Rectifier Based on Intelligent Controllers,” Applied Soft Computing, S1568-4946(17)30121-7, 2017.
[6]    S. Mahapatra, R. Daniel, D. N. Dey, S.K. Nayak, “Induction Motor Control Using PSO-ANFIS,” International Conference on Intelligent Computing, Communication & Convergence, doi: 10.1016/j.procs.2015.04.212,2015.
[7]    A. Pandey ,S. Kumar,K. K. Pandey ,D. R. Parhi, “Mobile robot navigation in unknown static environments using ANFIS controller,” Perspectives in Science, http://dx.doi.org/10.1016/j.pisc.2016.04.094,2016.
[8]    E. Azimi Rad, S. Eghbali, J. Hadadnia, & A. Izadipour, “Design of an optimal and robust fuzzy model for measuring the degree of threat to moving targets,” 14th Iranian Fuzzy Systems Conference, Tabriz, 2014. (in Persian)
[9]    E. Azimirad, J. Haddadnia, “Target threat assessment using fuzzy sets theory’’, International Journal of Advances in Intelligent Informatics, Vol. 1, No. 2, pp. 57-74, 2015.
[10]  P. Tahmasebi, A. Hezarkhani, “Application of Adaptive Neuro- Fuzzy Inference System for Grade Estimation; Case Study, Sarcheshmeh Porphyry Copper Deposit, Kerman, Iran”, Australian Journal of Basic and Applied Sciences, 4(3), 408-420, 2011.
[11]  S. Tala,  M. akbari sani, & M.R. Hassani Ahangar, “Identifying Radar Targets using the GMDH Deep Neural Network,” Journal of Radar,  vol. 8, no. 1, pp. 65-74, 2020. (in Persian)
[12]  T.P. Mote, & S.D. Lokhande, “Temperature Control System Using ANFIS,” International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, vol. 2, no. 1, 2012.
[13]   M. Bayat, M. Moradi, & J.Mazloum , “The Presentation of an Algorithm for Interference Detection in the Synthetic Aperture Radar,” Journal of Radar,  vol. 9, no. 1, pp. 107-117, 2021. (in Persian).
دوره 9، شماره 2 - شماره پیاپی 26
شماره پیاپی26، فصلنامه پاییز و زمستان
آذر 1401
صفحه 69-78
  • تاریخ دریافت: 17 آبان 1400
  • تاریخ بازنگری: 18 مهر 1401
  • تاریخ پذیرش: 24 مهر 1401
  • تاریخ انتشار: 01 آذر 1401