تحلیل خطای زوایای اویلر در روش مکان‌یابی LOS با یک ماهواره LEO

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر پسادکتری، دانشگاه صنعتی شریف، تهران، ایران

2 دانشجوی دکتری، دانشگاه علم و صنعت، تهران، ایران

3 دانشجوی دکتری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

4 استاد، دانشگاه صنعتی شریف، تهران، ایران

چکیده

در این مقاله، اثر خطا در زوایای اویلر بر عملکرد روش مکان‌یابی LOS با یک ماهواره LEO مورد تحلیل قرار گرفته است. در روش مکان‌یابی LOS با یک ماهواره LEO، تخمین موقعیت هدف زمینی براساس یافتن محل تقاطع دو بردار جهت با سطح زمین، مطلوب مسئله می‌باشد. در‌صورت وجود نویز در مقادیر اندازه‌گیری شده، مقدار تخمین موقعیت هدف از مقدار واقعی آن فاصله می‌گیرد و نیازمند آن است که اثرات آن مورد تحلیل قرار گیرد. به همین ‌منظور، در این مطالعه ابتدا با بیان مسئله در دستگاه مختصات ECEF و انتقال مبدأ مختصات به مختصات موقعیت ماهواره با بهره‌گیری از مقادیر طول و عرض جغرافیایی ماهواره و بردار وضعیت، سعی شده‌است مکان تقاطع خطوط LOS از سمت ماهواره به‌سوی هدف با سطح زمین به‌عنوان موقعیت هدف تعیین می‌شود. سپس، اثر خطا در زوایای اویلر بر عملکرد الگوریتم LOS به‌صورت تئوری مورد تحلیل قرار گرفته است و ماتریس کواریانس خطای آن با روش موسوم به آشفتگی به‌دست آمده است. همچنین، کران‌پایین  کرامر‌- رائو الگوریتم LOS ناشی از خطای زوایای اویلر ارائه شده‌است. براساس نتایج شبیه‌سازی، به منظور دستیابی به خطای RMSE کمتر از 1500متر در سناریو در نظر گرفته شده، خطای زوایا در بردار وضعیت باید کمتر از 1/0 درجه باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Error Analysis of Euler Angles in LEO Single-Satellite LOS Geolocation Method

نویسندگان [English]

  • Ali Noroozi 1
  • Goudarz Saadati Moghadam 2
  • Amir Setayesh 3
  • Mohammad Mahdi Nayebi 4
1 Postdoctoral researcher, Sharif University of Technology, Tehran, Iran
2 PhD student, University of Science and Technology, Tehran, Iran
3 PhD student, Khajeh Nasir al-Din Tusi University of Technology, Tehran, Iran
4 Professor, Sharif University of Technology, Tehran, Iran
چکیده [English]

In this paper, the effect of errors in the Euler angles on the performance of the LEO
single-satellite LOS geolocation method is analyzed. In the LEO single-satellite LOS
geolocation method, the aim is the estimation of the terrestrial target location by finding the
intersection of the two direction vectors and the ground. In the presence of errors in the
measured values, the target position estimate deviates from its true value and it is required to
analyze the effects of this deviation. To this end, first, by expressing the problem in the ECEF
coordinate system and transferring the origin to the satellite position by using the latitude and
longitude of the satellite and the state vector, it is tried to determine the intersection of the LOS
from the satellite to the target and the earth’s surface as the target location. Then, the effect of
the error in Euler angles on the performance of the LOS method is theoretically analyzed and its
covariance matrix is derived by the perturbation method. In addition, the CRLB for the LOS
method due to the error in Euler angles is presented. According to the simulation results, in
order to achieve an RMSE of less than 1500 meters in the considered scenario, the angle errors
in the attitude vector should be less than 0.1 degrees.

کلیدواژه‌ها [English]

  • Single-Satellite LOS Geolocation Method
  • Euler Angles
  • Attitude Vector
  • Cramer-Rao lower Bound (CRLB)
  • Error Analysis

Smiley face

[1]     H. Li, M. Zhang, and F. Guo, “A Novel Single Satellite Passive Location Method Based on One-Dimensional Cosine Angle and Doppler Rate of Changing,”  IEEE Inter. Conf. Sig. Proc., Comm. Computing (ICSPCC), Qingdao, pp. 1-6, 2018.
[2]     F. Guo, F. Yun, Z. Yiyu, X. Caigen, and L. Qiang, “Space Electronic Reconnaissance: Localization Theories and Methods,” John Wiley and Sons, 2014.
[3]     W. B. Gong,  K. Xie, D. W. Feng, et al., “Method and Precision Analysis of Direction-Finding and Position Based on Satellites Passive Location System,” J. Changsha Univ. Electric Power, vol. 19, no. 2, pp. 64-71, 2004.
[4]     C. He, M. Zhang, and F. Guo, “Bias Compensation for AOA-Geolocation of Known Altitude Target Using Single Satellite,” IEEE Access, vol. 7, pp. 54295-54304, 2019.
[5]     S. Hartzell, L. Burchett, R. Martin, C. Taylor, and 
A. Terzuoli, “Geolocation of Fast-Moving Objects from Satellite-Based Angle-of-Arrival Measurements,” IEEE
 J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 7, pp. 3396-3403, 2015.
[6]     C. Wang, W. Wang, and Z. Chen, “Single-Satellite Positioning Algorithm Based on Direction-Finding,” 2017 Prog. In Electromagn. Res. Symp. Spring (PIERS), St. Petersburg, pp. 2533-2538, 2017.
[7]     N. H. Nguyen and K. Doğançay, “Algebraic Solution for Stationary Emitter Geolocation by a LEO Satellite Using Doppler Frequency Measurements,” 2016 IEEE Inter. Conf. Acous., Speech and Sig. Proc. (ICASSP), Shanghai, pp. 3341-3345, 2016.
[8]     Y. Zhu and S. Zhang, “Passive Location Based on an Accurate Doppler Measurement by Single Satellite,” 2017 IEEE Radar Conf. (RadarConf), Seattle, WA, pp. 1424-1427, 2017.
[9]     L. Pan and H. Li, “Single Satellite Doppler Frequency Measurement and Location Technology Based on WGS-84 Ellipsoid Earth Model,” Shipboard electron. countermeasure, 
vol. 36, pp. 17-21, 2013.
[10]  M. Zhang, D. Feng, and F. Guo, “Passive Localization by a Single Satellite Based on Doppler Rate-of-Change,” Space electron. countermeasures, vol. 25, pp. 11-13, 2009.
[11]  Y. Xu, “New Techniques for Single Satellite Passive Localization Based on Doppler Information,” National Univ. of defense tech. thesis of the degree of master, vol. 100, pp. 105-110, 2009.
[12]  K. Liang, Z. Huang, and J. He, “A Passive Localization Method of Single Satellite Using TOA Sequence,” 2016 2nd IEEE Inter. Conf. Comp. and Commun. (ICCC), Chengdu, 2016, pp. 1795-1798.
[13]  Y. Norouzi, E. S. Kashani, A. Ajorloo, “Angle of arrival-based target localisation with low Earth orbit satellite observer”, IET Radar Sonar and Navig., vol. 10, no. 7, pp. 1186-1190, Aug. 2016.
[14]  Y. Wang and K. C. Ho, “An Asymptotically Efficient Estimator in Closed-Form for 3-D AOA Localization Using a Sensor Network,” IEEE Trans. Wireless Commun., vol. 14, no. 12, pp. 6524-6535, 2015.
[15]  D. C. Chang and M. W. Fang, “Bearing-Only Maneuvering 
Mobile Tracking with Nonlinear Filtering Algorithms in Wireless Sensor Networks,” IEEE Syst, vol. 8, no. 1, pp. 160-170, Mar. 2014.
[16]  L. Badriasl and K. Dogancay, “Three-Dimensional Target Motion Analysis Using Azimuth/Elevation Angles,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 4, pp. 3178-3194, Oct. 2014.
[17]  Z. Wang, J. A. Luo, and X. P. Zhang, “A Novel Location-Penalized Maximum Likelihood Estimator for Bearing-Only Target Localization,” IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6166-6181, 2012.
[18]  Z. Duan and Q. Zhou, “CRLB-Weighted Intersection Method for Target Localization Using AOA Measurements,” in Proc. IEEE Int. Conf. Comput. Intell. Virtual Environ. Meas. Syst. Appl. (CIVEMSA), pp. 1-6, 2015.
[19]  A. Dersan and Y. Tanik, “Passive Radar Localization by Time Difference of Arrival,” MILCOM 2002. Proc., Anaheim, CA, USA, vol. 2, pp. 1251-1257, 2002.
[20]  S. M. Kay, “Fundamentals of Statistical Signal Processing. Prentice Hall PTR,” 1993.