بررسی عملکرد رادارهای آرایه‌ فازی- چندورودی-چندخروجی تنوع فرکانسی در محیط با کلاتر ناهمگن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه یزد، یزد، ایران

2 استادیار، گروه مخابرات، دانشکده برق، دانشگاه یزد، یزد، ایران

3 دانشیار، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

4 دانشیار، دانشگاه یزد، یزد، ایران

چکیده

در سال‌های اخیر، رادارهای آرایه فازی- چند ­ورودی- چند ­خروجی به‌شدت مورد توجه محققان قرار گرفته است. در واقع در این رادارها، می‌توان مزایای رادارهای آرایه فازی و رادارهای چند ورودی- چند خروجی را با هم ترکیب کرد. در اینجا، فرض می­شود که زیر آرایه­ها دارای بهره­ دایورسیتی ‌فرکانسی بوده و از بهرة همدوسی کامل برخوردارند. در این مقاله، در ابتدا به موضوع طراحی آشکارساز بهینه برای رادارهای آرایه فازی- چند ورودی- چند خروجی بر‌پایة فرض شناخت ضریب انعکاس هدف در‌حضور کلاتر ناهمگن پرداخته می‌شود. در ادامه، بر پایة آشکارساز­های استخراج شده، احتمال آشکارسازی و احتمال هشدار کاذب محاسبه شده و به شکل فرمول بسته برحسب مؤلفه‌های رادار و محیط ارائه می‌گردد. سپس بر ‌پایه احتمال آشکارسازی محاسبه شده، مسئلة تخصیص توان به سیگنال‌های متعامد، به‌منظور بیشینه کردن احتمال آشکارسازی فرمول­بندی می­شود. در ‌نهایت، موضوع بهرة دایورسیتی ‌فرکانسی، مورد تجزیه ‌و ‌تحلیل ریاضی و کرانی برای گین دایور  سیتی ارائه می­گردد. شبیه­سازی­های عددی نشان می­دهد که آشکارسازهای بهینه استخراج شده، یک فیلتر توأم فضایی- زمانی خواهد بود، که به‌ طور مؤثری باعث تضعیف کلاتر در رادارهای آرایه فازی- چند ­ورودی- ‌چند­ خروجی می­گردد. همچنین نشان می­دهد که الگوریتم‌های تخصیص‌ توان، باعث بهبود عملکرد آشکارسازی اهداف در مقایسه با الگوریتم­های معیار می­گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The Analysis of Frequency Diverse Phased Multi-Input Multi-Output Radars within Non homogeneous Environments

نویسندگان [English]

  • Hamid Reza Fotoohi Firouzabad 1
  • Hosein Ghanei Yakhdan 2
  • Seyed Mehdi Hosseini Andargoli 3
  • Jamshid Aboei 4
1 PhD student, Yazd University, Yazd, Iran
2 Assistant Professor, Department of Telecommunications, Faculty of Electrical Engineering, Yazd University, Yazd, Iran
3 Associate Professor, Noshirvani University of Technology, Babol, Iran
4 Associate Professor, Yazd University, Yazd, Iran
چکیده [English]

In this paper, phased multiple-input-multiple-output radars (known as PMRs) that transmit
frequency diverse orthogonal signals with full overlapped sub-arrays are studied. At first, the
optimal detector of PMR is designed by assuming heterogeneous clutter and random target
scattering coefficients. Then, for the optimal detector, the closed-form detection probability and
false-alarm rate are computed. At the end, the power assigned to the orthogonal signals is
optimized analytically based on the convex optimization framework to maximize the detection
probability. The numerical simulations show that the optimal detector is a joint spatial-temporal
filter that attenuates the clutters considerably by effectively combining orthogonal signals in
order to to improve the PMR detection probability in comparison with the phased radar (PR).
Furthermore, simulation results illustrate that optimal power assignment in the form of
orthogonal waves, based on the statistics of the target scatterings and that of the clutter,
improves the detection performance of the PMR in comparison with the conventional equal
power assignment methods.

کلیدواژه‌ها [English]

  • Phased-Colocated MIMO Radar
  • Optimal Detector
  • Heterogeneous Clutter
  • Power Allocation

Smiley face

[1]     E. Brookner, “ Phased array radars-past, present and future,” RADAR 2002, Edinburgh, UK, pp. 104-113, 2002.
[2]     J. Li and P. Stoica, “ MIMO Radar with Colocated Antennas,” in IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 106-114, Sept. 2007.
[3]     E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D. Chizhik, and R. A. Valenzuela, “ Spatial Diversity in Radars—Models and Detection Performance,” in IEEE Transactions on Signal Processing, vol. 54, no. 3, pp. 823-838, March 2006.
[4]     L.  Jian  and P. Stoica, “MIMO radar signal processing,”   vol. 7, 2009.
[5]     A. Hassanien and S. A. Vorobyov, “Phased-MIMO Radar: A Trade off Between Phased-Array and MIMO Radars,” in IEEE Transactions on Signal Processing, vol. 58, no. 6, pp. 3137-3151, June 2010.[6]     M. Jankiraman, “FMCW Radar Design,” Artech House, 2018.
[7]     Q. He, N. H. Lehmann, R. S. Blum, and A. M. Haimovich,
 “MIMO Radar Moving Target Detection in Homogeneous Clutter,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 1290-1301, July 2010.
[8]     T.  Zhang, G. Cui, L. Kong and X. Yang, “Adaptive Bayesian Detection Using MIMO Radar in Spatially Heterogeneous Clutter,” in IEEE Signal Processing Letters, vol. 20, no. 6, pp. 547-550, June 2013.
[9]     M. Ahmadi and K. Mohamed-pour, “Space-time adaptive processing for phased-multiple-input–multiple-output radar in the non-homogeneous clutter environment,” in IET Radar, Sonar & Navigation, vol. 8, no. 6, pp. 585-596, July 2014.
[10]  X. Yu, G. Cui, J. Yang, and L. Kong, “MIMO Radar Transmit–Receive Design for Moving Target Detection in Signal-Dependent Clutter,” in IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 522-536, 2020.
[11]  A. J. Bogush, “Correlated Clutter and Resultant Properties of Binary Signals,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 9, no. 2, pp. 208-213, March 1973.
[12]  K. Schacke, “On the kronecker product,” Master's thesis, University of Waterloo (2004).
[13]  H. L. Van Trees, “Detection, Estimation, and Modulation Theory,”   Pt. 1.New York: Wiley, 1968.
[14]  M. J. Ghoreishian, S. M. Hosseini Andargoli, and F. Parvari, “Power allocation in MIMO radars based on LPI optimisation and detection performance fulfilment,” in IET Radar, Sonar and Navigation, vol. 14, no. 6, pp. 822-832, 2020,
[15]  M. Radmard, M. M. Chitgarha, M. Nazari Majd, and M. M. Nayebi, “Antenna placement and power allocation optimization in MIMO detection,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1468–1478, 2014.
[16]  J. G. Proakis and M. Salehi, “Digital communications,” vol. 4. New York, McGraw-hill, 2001.
[17]  S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge university press, 2004.
دوره 9، شماره 1 - شماره پیاپی 25
شماره پیاپی 25، فصلنامه بهار و تابستان
شهریور 1400
صفحه 1-16
  • تاریخ دریافت: 22 تیر 1400
  • تاریخ بازنگری: 09 مهر 1400
  • تاریخ پذیرش: 13 آذر 1400
  • تاریخ انتشار: 01 شهریور 1400