[1] D. M. Pozar, Microwave Engineering, 4rd ed. New York, Wiley, 2012.
[2] P. T. Nguyen, A. M. Abbosh, and S. Crozier, “3-Dfocused microwave hyperthermia for breast cancer treatment with experimental validation,” IEEE Trans. Antennas Propag , vol. 65, no. 7, pp. 3489–3500, 2017.
[3] H. Than, G. Sun, G. Cuellar, J. Zeng, N. Schultz,
M. Moya, Y. Chung, B. Deckman, and M. DeLisio,
“A 600-W C-band amplifier using spatially combined gaas fets,” in 2011 IEEE Compound Semicond. Integr. Circuit Symposium (CSICS), pp. 1–4, 2011.
[4] L. Guo, J. Li, W. Huang, H. Shao, and T. Ba, “A compact four-way power combiner,” IEEE Microwave Wireless Component Letter, vol. 27, no. 3, pp. 239–241, 2017.
[5] Y. Dai, Q. Xie, H. Qunfei, H. Yin, and T. Zuo, “Study on a miniature lange coupler without via hole in C band based on LTCC,” Journal of Microwave, vol. 28, no. 5, pp. 24–27, 2012.
[6] Q. Chu, Q. Wu, and D. Mo, “A Ka band E-plane waveguide magic-T with coplanar arms,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2673–2679, 2014.
[7] L. Guo, J. Li, W. Huang, H. Shao, T. Ba, T. Jiang,
Y. Jiang, and G. Deng, “A waveguide magic-T with coplanar arms for high-power solid-state power combining,” IEEE Trans. Microw. Theory Techn, vol. 65, no. 8, pp. 2942–2952, 2017.
[8] H. Zhang, D. Y. Shao, and S. Zeng, “Design of wideband waveguide power divider with high isolation in V band,” Journal of Microwave, vol. 34, no. 2, pp. 30–35, 2018.
[9] K. Song, F. Xia, Y. Zhou, and S. Guo, “Microstrip/slotline-coupling substrate integrated waveguide power divider with high output isolation,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 2, pp. 95–97, 2019.
[10] G. Askari, H. Mirmohammad-sadeghi, M. Ahmadzadeh,
R. Safian, and P. Rasekh, “Broadband rectangular high power divider/combiner,” IET Microw. Antennas Propag., vol. 9, no. 1, pp. 58–63, 2015.
[11] R. Gomez-Garcia, R. Loeches-Sanchez, D. Psychogiou, and D. Peroulis, “Single/multi-band wilkinson-type power dividers with embedded transversal filtering sections and application to channelized filters,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 6, pp. 1518–1527, 2015.
[12] C. Zhu, J. Xu, and W. Wu, “Microstrip four-way reconfigurable Single/Dual/Wideband filtering power divider with tunable frequency, bandwidth, and PDR,” IEEE Trans. Industrial Electronics, vol. 65, no. 11, pp. 8840–8850, Nov. 2018.
[13] F. Huang, J. Wang, J. Hong, and W. Wu, “A new balanced-to-unbalanced filtering power divider with dual controllable passbands and enhanced inband common-mode suppression,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 2, pp. 695–703, Feb. 2019.
[14] K. Song, F. Xia, Y. Zhou, S. Guo, and Y.
Fan, “Microstrip / Slotline – Coupling Substrate Integrated
Waveguide Power Divider with High Output Isolation,” in IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 95-97, Feb. 2019.
[15] Z. Liu, and G. Xiao, “New multi-way SIW power dividers with high isolation,” 2014 Asia-Pacific Microwave Conference, Sendai, Japan, pp. 702-704, 2014.
[16] K. Song, Y. Chen, T. Kong, and Y. Fan, “Broadband Eight-Way Substrate Integrated Waveguide Radial Power Divider/Combiner with High-Isolation,” in IEEE Access, vol. 8, pp. 69268-69272, 2020.
[17] P. S. Kildal, E. Alfonso, A. Valero-Nogueira, and E.
Rajo-Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 84–87, 2009.
[18] P. S. Kildal, A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and A. ValeroNogueira, “Design and experimental verification of ridge gap waveguides in bed of nails for parallel plate mode suppression,” IET Microw., Antennas Propag., vol. 5, no. 3, pp. 262–270, Mar. 2011.
[19] A. U. Zaman and P. S. Kildal, “Gap waveguides,” in Handbook of Antenna Technologies, Z. N. Chen, D. Liu,
H. Nakano, X. Qing, and T. Zwick, Eds. Singapore: Springer, pp. 3273–3347, 2016.
[20] A. Karimi Nobandegani and S. E. Hosseini, “Design and Simulation of a Ku-Band Array Antenna Feed Network Based on Novel Ridge-Gap Waveguide Technology,” Journal of Radar, vol. 6, no. 1, pp. 1-6, 2019. (In Persian).
[21] D. Zarifi, A. Farahbakhsh, A. U. Zaman, and P. S. Kildal, “Wide-Band Slot Antenna Arrays with Single-Layer Corporate-Feed Network in Ridge Gap Waveguide Technology,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 2905-2913, July 2016.
[22] M. Nasri and D. Zarifi, “Design and Simulation of Waveguide Rotary Joint Based on Gap Waveguide Technology for 60 GHz Applications”, Journal of Radar, vol. 8, no. 2, pp. 73-78, 2021. (In Persian)
[23] A. Farahbakhsh, D. Zarifi, and A. U. Zaman, "60-GHz Groove Gap Waveguide Based Wideband H-Plane Power Dividers and Transitions: For Use in High-Gain Slot Array Antenna," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4111-4121, Nov. 2017.
[24] A. Vosoogh, M. S. Sorkherizi, A. U. Zaman, J. Yang, and A. A. Kishk, “An Integrated Ka-Band Diplexer-Antenna Array Module Based on Gap Waveguide Technology with Simple Mechanical Assembly and No Electrical Contact Requirements,” in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 2, pp. 962-972, Feb. 2018.
[25] A. Farahbakhsh, D. Zarifi, and A. U. Zaman, “A mmWave Wideband Slot Array Antenna Based on Ridge Gap Waveguide with 30% Bandwidth,” in IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 1008-1013, Feb. 2018.
[25] M. H. Ostovarzadeh and S. A. Razavi Parizi, “Design of Ku Band Monopulse Antenna in Gap Waveguide Technology”, Journal of Radar, vol. 8, no. 1, pp. 111-117, 2020. (In Persian).