[1] R. Zhang, G. Li, and Y. D. Zhang, “Micro-Doppler interference removal via histogram analysis in time-frequency domain,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 2, pp. 755–768, 2016.##
[2] L. Stankovic, T. Thayaparan, M. Dakovic, and V. Popovic-Bugarin, “Micro-Doppler removal in the radar imaging analysis,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2, pp. 1234–1250, 2013.##
[3] V. C. Chen, D. Tahmoush, and W. J. Miceli, Radar Micro-Doppler Signatures. Institution of Engineering and Technology, 2014.##
[4] Y. Kim and H. Ling, “Human activity classification based on micro-Doppler signatures using a support vector machine,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1328–1337, 2009.##
[5] P. Molchanov, R. I. A. Harmanny, J. J. M. de Wit, K. Egiazarian, and J. Astola, “Classification of small UAVs and birds by micro-Doppler signatures,” Int. J. Microw. Wirel. Technol., vol. 6, no. 3–4, pp. 435–444, 2014.##
[6] V. C. Chen, The micro-Doppler effect in radar. Artech House, 2011.##
[7] Y. Kim and T. Moon, “Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 8–12, 2015.##
[8] Y. Kim and B. Toomajian, “Hand gesture recognition using micro-Doppler signatures with convolutional neural network,” IEEE Access, vol. 4, pp. 7125–7130, 2016.##
[9] D. P. Fairchild and R. M. Narayanan, “Classification of human motions using empirical mode decomposition of human micro-Doppler signatures,” IET Radar, Sonar Navig., vol. 8, no. 5, pp. 425–434, 2014.##
[10] W. D. Van Eeden, J. P. De Villiers, R. J. Berndt, W. A. J. Nel, and E. Blasch, “Micro-Doppler radar classification of humans and animals in an operational environment,” Expert Syst. Appl., vol. 102, pp. 1–11, 2018.##
[11] X. Li, Y. Huang, K. Yin, and Y. Qiao, “Classification of Vehicles with High-Speed Airborne Radar Based on Micro-Doppler Signatures,” IETE Tech. Rev., vol. 35, no. 2, pp. 180–189, 2018.##
[12] B. Erol, M. G. Amin, and S. Z. Gurbuz, “Automatic data-driven frequency-warped cepstral feature design for micro-Doppler classification,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 4, pp. 1724–1738, 2018.##
[13] Z. Zhang, P. Pouliquen, A. Waxman, and A. G. Andreou, “Acoustic micro-Doppler gait signatures of humans and animals,” in 2007 41st Annual Conference on Information Sciences and Systems, 2007, pp. 627–630.##
[14] R. M. Narayanan and M. Zenaldin, “Radar micro-Doppler signatures of various human activities,” IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1205–1215, 2015.##
[15] C. E. Rotander and H. Von Sydow, “Classification of helicopters by the L/N-quoutient,” Radar Syst. (RADAR 97), pp. 629 – 633, 1997.##
[16] S.-H. Yoon, B. Kim, and Y.-S. Kim, “Helicopter classification using time-frequency analysis,” Electron. Lett., vol. 36, no. 22, pp. 1871–1872, 2000.##
[17] Y. Yang, Z. K. Peng, X. J. Dong, W. M. Zhang, and G. Meng, “General parameterized time-frequency transform,” IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2751–2764, 2014.##
[18] T. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution—A tool for time-frequency signal analysis,” Philips J. Res, vol. 35, no. 3, pp. 217–250, 1980.##
[19] I. Orović, S. Stanković, and T. Thayaparan, “Time--frequency-based instantaneous frequency estimation of sparse signals from incomplete set of samples,” IET Signal Process., vol. 8, no. 3, pp. 239–245, 2014.##
[20] I. Orović, A. Draganić, and S. Stanković, “Sparse time--frequency representation for signals with fast varying instantaneous frequency,” IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1260–1267, 2015.##
[21] S. Stankovic and L. J. Stankovic, “Introducing time-frequency distribution with a’complex-time’argument,” Electron. Lett., vol. 32, no. 14, pp. 1265–1267, 1996.##
[22] L. Stankovic, “Time-frequency distributions with complex argument,” IEEE Trans. Signal Process., vol. 50, no. 3, pp. 475–486, 2002.##
[23] I. Orovic, M. Orlandic, S. Stankovic, and Z. Uskokovic, “A virtual instrument for time-frequency analysis of signals with highly nonstationary instantaneous frequency,” IEEE Trans. Instrum. Meas., vol. 60, no. 3, pp. 791–803, 2010.##
[24] R. Ricci and A. Balleri, “Recognition of humans based on radar micro-Doppler shape spectrum features,” IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1216–1223, 2015.##
[25] Y. Li, L. Du, and H. Liu, “Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 3001–3013, 2012.##
[26] Z. Khodkar, seyyed M. Alavi, and N. Parhizgar, “Feature Extraction from Helicopter Using Time Domain Back Scattered Pulses,” Passiv. Def. Sci. Tech, vol. 3, pp. 219–229, 2013.##
[27] G. Chen, H. Yu, and X. Yang, “Micro-Doppler analysis and parameter estimation of the rotating linear rigid target,” in 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2012, vol. 1, pp. 94–97.##
[28] M. K. Bkaczyk et al., “Micro-Doppler signatures of helicopters in multistatic passive radars,” IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1276–1283, 2015, doi: 10.1049/iet-rsn.2015.0125.##
[29] C. Clemente and J. J. Soraghan, “Gnss-based passive bistatic radar for micro-doppler analysis of helicopter rotor blades,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 1, pp. 491–500, 2014, doi: 10.1109/TAES.2013.120018.##
[30] D. P. Fairchild and R. M. Narayanan, “Multistatic micro-Doppler radar for determining target orientation and activity classification,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 1, pp. 512–521, 2016.##
[31] J. Xu, X.-Z. Dai, X.-G. Xia, L.-B. Wang, J. Yu, and Y.-N. Peng, “Optimizations of multisite radar system with MIMO radars for target detection,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 4, pp. 2329–2343, 2011.##
[32] J. L. Garry and G. E. Smith, “Experimental Observations of Micro-Doppler Signatures with Passive Radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 2, pp. 1045–1052, 2019, doi: 10.1109/TAES.2019.2895584.##
[33] P. Setlur, F. Ahmad, and M. Amin, “Helicopter radar return analysis: Estimation and blade number selection,” Signal Processing, vol. 91, no. 6, pp. 1409–1424, 2011.##
[34] R. Zhang, G. Li, C. Clemente, and P. K. Varshney, “Helicopter classification via period estimation and time-frequency masks,” in 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015, pp. 61–64.##
[35] L. Cirillo, A. Zoubir, and M. Amin, “Parameter estimation for locally linear FM signals using a time-frequency Hough transform,” IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4162–4175, 2008.##
[36] H. Yildiz, “Parameter estimation of multicomponent micro-Doppler signals,” PhD thesis, Middle East technical University, 2014.##
[37] L. Stankovic, M. Dakovic, T. Thayaparan, and V. Popovic-Bugarin, “Inverse radon transform--based micro-doppler analysis from a reduced set of observations,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 2, pp. 1155–1169, 2015, doi: 10.1109/TAES.2014.140098.##
[38] S. Peleg and B. Friedlander, “The discrete polynomial-phase transform,” IEEE Trans. Signal Process., vol. 43, no. 8, pp. 1901–1914, 1995.##
[39] B. Porat and B. Friedlander, “Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals,” IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 995–1001, 1996.##
[40] S. Barbarossa, A. Scaglione, and G. B. Giannakis, “Product high-order ambiguity function for multicomponent polynomial-phase signal modeling,” IEEE Trans. Signal Process., vol. 46, no. 3, pp. 691–708, 1998.##
[41] S. Barbarossa and V. Petrone, “Analysis of polynomial-phase signals by the integrated generalized ambiguity function,” IEEE Trans. Signal Process., vol. 45, no. 2, pp. 316–327, 1997.##
[42] P. O’shea, “A new technique for instantaneous frequency rate estimation,” IEEE Signal Process. Lett., vol. 9, no. 8, pp. 251–252, 2002.##
[43] P. O’shea, “A fast algorithm for estimating the parameters of a quadratic FM signal,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 385–393, 2004.##
[44] I. Djurović and L. Stanković, “Quasi-maximum-likelihood estimator of polynomial phase signals,” IET Signal Process., vol. 8, no. 4, pp. 347–359, 2013, doi: 10.1049/iet-spr.2013.0104.##
[45] I. Djurovic, V. Popovic-Bugarin, M. Simeunovic, I. Djurović, V. Popović-Bugarin, and M. Simeunović, “The STFT-based estimator of micro-Doppler parameters,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 3, pp. 1273–1283, 2017, doi: 10.1109/TAES.2017.2669741.##
[46] I. Djurovi and I. Djurović, “QML-RANSAC instantaneous frequency estimator for overlapping multicomponent signals in the time-frequency plane,” IEEE Signal Process. Lett., vol. 25, no. 3, pp. 447–451, 2018, doi: 10.1109/LSP.2018.2795554.##
[47] J. J. M. De Wit, R. I. A. Harmanny, and P. Molchanov, “Radar micro-Doppler feature extraction using the singular value decomposition,” in 2014 International Radar Conference, 2014, pp. 1–6.##
[48] T. Thayaparan, S. Abrol, E. Riseborough, L. J. Stankovic, D. Lamothe, and G. Duff, “Analysis of radar micro-Doppler signatures from experimental helicopter and human data,” IET Radar, Sonar Navig., vol. 1, no. 4, pp. 289–299, 2007.##
[49] B.-S. Oh, X. Guo, F. Wan, K.-A. Toh, and Z. Lin, “Micro-Doppler mini-UAV classification using empirical-mode decomposition features,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 2, pp. 227–231, 2017.##
[50] X. Dong, S. Chen, G. Xing, Z. Peng, W. Zhang, and G. Meng, “Doppler Frequency Estimation by Parameterized Time-Frequency Transform and Phase Compensation Technique,” IEEE Sens. J., vol. 18, no. 9, pp. 3734–3744, 2018, doi: 10.1109/JSEN.2018.2812848.##
[51] S. Chen, X. Dong, G. Xing, Z. Peng, W. Zhang, and G. Meng, “Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition,” IEEE Sens. J., vol. 17, no. 18, pp. 5994–6005, 2017.##
[52] E. Sejdić, I. Orović, and S. Stanković, “Compressive sensing meets time--frequency: an overview of recent advances in time--frequency processing of sparse signals,” Digit. Signal Process., vol. 77, pp. 22–35, 2018.##
[53] L. Stanković, I. Orović, S. Stanković, and M. Amin, “Compressive sensing based separation of nonstationary and stationary signals overlapping in time-frequency,” IEEE Trans. Signal Process., vol. 61, no. 18, pp. 4562–4572, 2013.##
[54] Z. Khodkar and S. M. Alavi, “Target Classification Enhancement in VHF Radar Using Support Vector Machine,” Iran. J. Sci. Technol. - Trans. Electr. Eng., vol. 40, no. 1, pp. 51–62, 2016, doi: 10.1007/s40998-016-0004-2.##
[55] H. R. Hashempour, “Fast Parametric ISAR Autofocus Algorithm Based On Entropy and Eigenvalue Decomposition,” Journal of Radar , vol. 7, no. 1, pp. 15–23, 2019.##
[56] G. Li, R. Zhang, W. Rao, and X. Wang, “Separation of multiple micro-Doppler components via parametric sparse recovery,” in 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, 2013, pp. 2978–2981.##
[57] G. Li and P. K. Varshney, “Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 12, pp. 4937–4948, 2014.##
[58] D. Gaglione, C. Clemente, F. Coutts, G. Li, and J. J. Soraghan, “Model-based sparse recovery method for automatic classification of helicopters,” in 2015 IEEE Radar Conference (RadarCon), 2015, pp. 1161–1165.##