استفاده از مایکروداپلر سیگنال بازگشتی رادار در استخراج مشخصات بالگرد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری،دانشکده برق و کامپیوتر، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 استادیار، دانشکده برق، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

پردازش مایکروداپلر برای استخراج ویژگی­های هدف در سالیان اخیر مورد توجه پژوهشگران متعدد قرار گرفته است. علاوه بر سرعت شعاعی اهداف نسبت به رادار، که باعث شیفت فرکانسی داپلر در فرکانس سیگنال بازگشتی به رادار می‌شود، حرکات دیگری نیز در بعضی از اهداف وجود دارد که مدولاسیون فرکانسی سوار بر فرکانس داپلر اصلی را ایجاد می­کند. لرزش‌های بدنه و موتور هواپیما و چرخش پره‌های بالگرد نمونه‌هایی از این حرکت­اندکه باعث تولید جابجایی فرکانسی متناوب در زمان می‌شوند که به آن مایکروداپلر می گوییم. بر مبنای اطلاعات مایکروداپلر دریافتی از سیگنال بازگشتی رادار، اطلاعات زیادی از مشخصات هدف قابل استخراج بوده و می‌توان پارامترهای مختلف هدف را تخمین زد. در این مقاله به‌طور خاص به سیگنال مایکروداپلر بالگرد پرداخته‌شده‌است. تخمین پارامترهای بالگرد در زمینه تعداد پره‌ها، طول و سرعت زاویه‌ای دوران آن‌ها که درنهایت می تواند منجر به شناسایی کامل مدل بالگرد شود از اهداف این تحقیق است. بدین منظور روش‌های ارائه‌شده برای تخمین پارامترهای بالگرد معرفی، دسته بندی و مرور می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Employing microdoppler of radar signal to extract the characteristics of helicopter rotor

نویسندگان [English]

  • Fatemeh HamedaniGolshan 1
  • Ehsan Yazdian 2
1 PhD Student, Faculty of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
2 Assistant Professor, Faculty of Electrical Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Microdoppler is a new subject in radar signal processing with a research history of about twenty years. Radial velocity of targets relative to radar position, causes doppler frequency shift of return signal to radar. In addition to radial velocity of target fuselage, many targets consist of components which have small scale motions which results in frequency modulation around the main doppler frequency shift. Vibrations of the motor components and fuselage of airplanes and blade rotation of helicopters are some examples of these types of small scale motions which produce periodic doppler shifts known as microdoppler. Extraction of microdoppler shift and its properties is very important in target classifications and estimating many parameters of the target. In this study we focus on microdoppler properties of return signal of radar from helicopter. Estimation of helicopter parameters such as number of blades, their length and velocity of angular rotation and finally identification of helicopter type are aims of this research. For this purpose, the previous methods for estimating the helicopter parameters are reviewed and classified.

کلیدواژه‌ها [English]

  • MicroDoppler
  • Helicopter
  • Parameter Estimation
  • Radar
 [1]          R. Zhang, G. Li, and Y. D. Zhang, “Micro-Doppler interference removal via histogram analysis in time-frequency domain,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 2, pp. 755–768, 2016.##
[2]          L. Stankovic, T. Thayaparan, M. Dakovic, and V. Popovic-Bugarin, “Micro-Doppler removal in the radar imaging analysis,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 2, pp. 1234–1250, 2013.##
[3]          V. C. Chen, D. Tahmoush, and W. J. Miceli, Radar Micro-Doppler Signatures. Institution of Engineering and Technology, 2014.##
[4]          Y. Kim and H. Ling, “Human activity classification based on micro-Doppler signatures using a support vector machine,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1328–1337, 2009.##
[5]          P. Molchanov, R. I. A. Harmanny, J. J. M. de Wit, K. Egiazarian, and J. Astola, “Classification of small UAVs and birds by micro-Doppler signatures,” Int. J. Microw. Wirel. Technol., vol. 6, no. 3–4, pp. 435–444, 2014.##
[6]          V. C. Chen, The micro-Doppler effect in radar. Artech House, 2011.##
[7]          Y. Kim and T. Moon, “Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 1, pp. 8–12, 2015.##
[8]          Y. Kim and B. Toomajian, “Hand gesture recognition using micro-Doppler signatures with convolutional neural network,” IEEE Access, vol. 4, pp. 7125–7130, 2016.##
[9]          D. P. Fairchild and R. M. Narayanan, “Classification of human motions using empirical mode decomposition of human micro-Doppler signatures,” IET Radar, Sonar Navig., vol. 8, no. 5, pp. 425–434, 2014.##
[10]        W. D. Van Eeden, J. P. De Villiers, R. J. Berndt, W. A. J. Nel, and E. Blasch, “Micro-Doppler radar classification of humans and animals in an operational environment,” Expert Syst. Appl., vol. 102, pp. 1–11, 2018.##
[11]        X. Li, Y. Huang, K. Yin, and Y. Qiao, “Classification of Vehicles with High-Speed Airborne Radar Based on Micro-Doppler Signatures,” IETE Tech. Rev., vol. 35, no. 2, pp. 180–189, 2018.##
[12]        B. Erol, M. G. Amin, and S. Z. Gurbuz, “Automatic data-driven frequency-warped cepstral feature design for micro-Doppler classification,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 4, pp. 1724–1738, 2018.##
[13]        Z. Zhang, P. Pouliquen, A. Waxman, and A. G. Andreou, “Acoustic micro-Doppler gait signatures of humans and animals,” in 2007 41st Annual Conference on Information Sciences and Systems, 2007, pp. 627–630.##
[14]        R. M. Narayanan and M. Zenaldin, “Radar micro-Doppler signatures of various human activities,” IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1205–1215, 2015.##
[15]        C. E. Rotander and H. Von Sydow, “Classification of helicopters by the L/N-quoutient,” Radar Syst. (RADAR 97), pp. 629 – 633, 1997.##
[16]        S.-H. Yoon, B. Kim, and Y.-S. Kim, “Helicopter classification using time-frequency analysis,” Electron. Lett., vol. 36, no. 22, pp. 1871–1872, 2000.##
[17]        Y. Yang, Z. K. Peng, X. J. Dong, W. M. Zhang, and G. Meng, “General parameterized time-frequency transform,” IEEE Trans. Signal Process., vol. 62, no. 11, pp. 2751–2764, 2014.##
[18]        T. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution—A tool for time-frequency signal analysis,” Philips J. Res, vol. 35, no. 3, pp. 217–250, 1980.##
[19]        I. Orović, S. Stanković, and T. Thayaparan, “Time--frequency-based instantaneous frequency estimation of sparse signals from incomplete set of samples,” IET Signal Process., vol. 8, no. 3, pp. 239–245, 2014.##
[20]        I. Orović, A. Draganić, and S. Stanković, “Sparse time--frequency representation for signals with fast varying instantaneous frequency,” IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1260–1267, 2015.##
[21]        S. Stankovic and L. J. Stankovic, “Introducing time-frequency distribution with a’complex-time’argument,” Electron. Lett., vol. 32, no. 14, pp. 1265–1267, 1996.##
[22]        L. Stankovic, “Time-frequency distributions with complex argument,” IEEE Trans. Signal Process., vol. 50, no. 3, pp. 475–486, 2002.##
[23]        I. Orovic, M. Orlandic, S. Stankovic, and Z. Uskokovic, “A virtual instrument for time-frequency analysis of signals with highly nonstationary instantaneous frequency,” IEEE Trans. Instrum. Meas., vol. 60, no. 3, pp. 791–803, 2010.##
[24]        R. Ricci and A. Balleri, “Recognition of humans based on radar micro-Doppler shape spectrum features,” IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1216–1223, 2015.##
[25]        Y. Li, L. Du, and H. Liu, “Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 3001–3013, 2012.##
[26]        Z. Khodkar,  seyyed M. Alavi, and N. Parhizgar, “Feature Extraction from Helicopter Using Time Domain Back Scattered Pulses,” Passiv. Def. Sci. Tech, vol. 3, pp. 219–229, 2013.##
[27]        G. Chen, H. Yu, and X. Yang, “Micro-Doppler analysis and parameter estimation of the rotating linear rigid target,” in 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2012, vol. 1, pp. 94–97.##
[28]        M. K. Bkaczyk et al., “Micro-Doppler signatures of helicopters in multistatic passive radars,” IET Radar, Sonar Navig., vol. 9, no. 9, pp. 1276–1283, 2015, doi: 10.1049/iet-rsn.2015.0125.##
[29]        C. Clemente and J. J. Soraghan, “Gnss-based passive bistatic radar for micro-doppler analysis of helicopter rotor blades,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 1, pp. 491–500, 2014, doi: 10.1109/TAES.2013.120018.##
[30]        D. P. Fairchild and R. M. Narayanan, “Multistatic micro-Doppler radar for determining target orientation and activity classification,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 1, pp. 512–521, 2016.##
[31]        J. Xu, X.-Z. Dai, X.-G. Xia, L.-B. Wang, J. Yu, and Y.-N. Peng, “Optimizations of multisite radar system with MIMO radars for target detection,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 4, pp. 2329–2343, 2011.##
[32]        J. L. Garry and G. E. Smith, “Experimental Observations of Micro-Doppler Signatures with Passive Radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 2, pp. 1045–1052, 2019, doi: 10.1109/TAES.2019.2895584.##
[33]        P. Setlur, F. Ahmad, and M. Amin, “Helicopter radar return analysis: Estimation and blade number selection,” Signal Processing, vol. 91, no. 6, pp. 1409–1424, 2011.##
[34]        R. Zhang, G. Li, C. Clemente, and P. K. Varshney, “Helicopter classification via period estimation and time-frequency masks,” in 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015, pp. 61–64.##
[35]        L. Cirillo, A. Zoubir, and M. Amin, “Parameter estimation for locally linear FM signals using a time-frequency Hough transform,” IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4162–4175, 2008.##
[36]        H. Yildiz, “Parameter estimation of multicomponent micro-Doppler signals,” PhD thesis, Middle East technical University, 2014.##
[37]        L. Stankovic, M. Dakovic, T. Thayaparan, and V. Popovic-Bugarin, “Inverse radon transform--based micro-doppler analysis from a reduced set of observations,” IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 2, pp. 1155–1169, 2015, doi: 10.1109/TAES.2014.140098.##
[38]        S. Peleg and B. Friedlander, “The discrete polynomial-phase transform,” IEEE Trans. Signal Process., vol. 43, no. 8, pp. 1901–1914, 1995.##
[39]        B. Porat and B. Friedlander, “Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals,” IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 995–1001, 1996.##
[40]        S. Barbarossa, A. Scaglione, and G. B. Giannakis, “Product high-order ambiguity function for multicomponent polynomial-phase signal modeling,” IEEE Trans. Signal Process., vol. 46, no. 3, pp. 691–708, 1998.##
[41]        S. Barbarossa and V. Petrone, “Analysis of polynomial-phase signals by the integrated generalized ambiguity function,” IEEE Trans. Signal Process., vol. 45, no. 2, pp. 316–327, 1997.##
[42]        P. O’shea, “A new technique for instantaneous frequency rate estimation,” IEEE Signal Process. Lett., vol. 9, no. 8, pp. 251–252, 2002.##
[43]        P. O’shea, “A fast algorithm for estimating the parameters of a quadratic FM signal,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 385–393, 2004.##
[44]        I. Djurović and L. Stanković, “Quasi-maximum-likelihood estimator of polynomial phase signals,” IET Signal Process., vol. 8, no. 4, pp. 347–359, 2013, doi: 10.1049/iet-spr.2013.0104.##
[45]        I. Djurovic, V. Popovic-Bugarin, M. Simeunovic, I. Djurović, V. Popović-Bugarin, and M. Simeunović, “The STFT-based estimator of micro-Doppler parameters,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 3, pp. 1273–1283, 2017, doi: 10.1109/TAES.2017.2669741.##
[46]        I. Djurovi and I. Djurović, “QML-RANSAC instantaneous frequency estimator for overlapping multicomponent signals in the time-frequency plane,” IEEE Signal Process. Lett., vol. 25, no. 3, pp. 447–451, 2018, doi: 10.1109/LSP.2018.2795554.##
[47]        J. J. M. De Wit, R. I. A. Harmanny, and P. Molchanov, “Radar micro-Doppler feature extraction using the singular value decomposition,” in 2014 International Radar Conference, 2014, pp. 1–6.##
[48]        T. Thayaparan, S. Abrol, E. Riseborough, L. J. Stankovic, D. Lamothe, and G. Duff, “Analysis of radar micro-Doppler signatures from experimental helicopter and human data,” IET Radar, Sonar Navig., vol. 1, no. 4, pp. 289–299, 2007.##
[49]        B.-S. Oh, X. Guo, F. Wan, K.-A. Toh, and Z. Lin, “Micro-Doppler mini-UAV classification using empirical-mode decomposition features,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 2, pp. 227–231, 2017.##
[50]        X. Dong, S. Chen, G. Xing, Z. Peng, W. Zhang, and G. Meng, “Doppler Frequency Estimation by Parameterized Time-Frequency Transform and Phase Compensation Technique,” IEEE Sens. J., vol. 18, no. 9, pp. 3734–3744, 2018, doi: 10.1109/JSEN.2018.2812848.##
[51]        S. Chen, X. Dong, G. Xing, Z. Peng, W. Zhang, and G. Meng, “Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition,” IEEE Sens. J., vol. 17, no. 18, pp. 5994–6005, 2017.##
[52]        E. Sejdić, I. Orović, and S. Stanković, “Compressive sensing meets time--frequency: an overview of recent advances in time--frequency processing of sparse signals,” Digit. Signal Process., vol. 77, pp. 22–35, 2018.##
[53]        L. Stanković, I. Orović, S. Stanković, and M. Amin, “Compressive sensing based separation of nonstationary and stationary signals overlapping in time-frequency,” IEEE Trans. Signal Process., vol. 61, no. 18, pp. 4562–4572, 2013.##
[54]        Z. Khodkar and S. M. Alavi, “Target Classification Enhancement in VHF Radar Using Support Vector Machine,” Iran. J. Sci. Technol. - Trans. Electr. Eng., vol. 40, no. 1, pp. 51–62, 2016, doi: 10.1007/s40998-016-0004-2.##
[55]        H. R. Hashempour, “Fast Parametric ISAR Autofocus Algorithm Based On Entropy and Eigenvalue Decomposition,” Journal of  Radar , vol. 7, no. 1, pp. 15–23, 2019.##
[56]        G. Li, R. Zhang, W. Rao, and X. Wang, “Separation of multiple micro-Doppler components via parametric sparse recovery,” in 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, 2013, pp. 2978–2981.##
[57]        G. Li and P. K. Varshney, “Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no. 12, pp. 4937–4948, 2014.##
[58]        D. Gaglione, C. Clemente, F. Coutts, G. Li, and J. J. Soraghan, “Model-based sparse recovery method for automatic classification of helicopters,” in 2015 IEEE Radar Conference (RadarCon), 2015, pp. 1161–1165.##