ارزیابی کمی الگوریتم‌های بازیابی تصویر در رژیم مایکروویو

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی برق، مرکز آموزش عالی شهرضا، شهرضا، ایران

چکیده

کیفیت تصویر مناسب یکی از مهم‌ترین چالش‌های روش‌های بازیابی در رژیم مایکروویو است. این مقاله به بررسی و مقایسه تصویر بازیایی شده از روش اصلاحی مجموعه تراز (MLSM)‏ با چهار روش‏ تکرار برن معوج‏ (DBIM)، منبع کانتراست‏ (CSI)، نمونه برداری خطی (LSM)‏ و موزیک (MUSIC) تمرکز دارد. همچنین سه معیار مهم یک سیستم تصویر‌برداری یعنی صحت‏، وضوح و کانتراست تصویر به‌صورت کمی برای روش‌های مرسوم معرفی شده، بررسی می‌گردد. سه روش بازیابی کمی DBIM، CSI و MLSM با یک حدس اولیه شروع و با اصلاح آن طی یک فرایند تکرار به پراکنده‌ساز واقعی نزدیک می‌شوند. اگر چه حجم محاسبات در این روش‌ها بالاست اما وضوح و کانتراست تصویر بالایی در مقایسه با دو روش دیگر دارند به‌گونه‌ای که مشاهده می‌شود روش DBIM و CSI توانایی تفکیک کامل دو جسم در فاصله λ 4/0 و MLSM در فاصله 15/λ را دارد. با توجه به این‌که ناحیه تحت بررسی به‌وسیله روش MLSM به یک ناحیه کوچک‌تر محدود می‌شود صحت بازیابی آن در بین دو روش کمی دیگر بیشتر است.   

کلیدواژه‌ها


عنوان مقاله [English]

Quantitative Assessment of Reconstruction Algorithms in Microwave Regime

نویسنده [English]

  • Mohammad Reza Eskandari
Assistant Professor, Department of Electrical Engineering, Shahreza Higher Education Center, Shahreza, Iran
چکیده [English]

Acquiring acceptable image qualitiy in microwave imaging is one of the challenging task in this field. This paper aims to investigate and compare modified level set method (MLSM) with four s‎tate-of-the-art methods i.e., distorted born iterative method (DBIM), contrast source inversion (CSI) method, linear sampling method (LSM) and multiple signal classification (MUSIC) method in image reconstruction and focuses on ‎quantitative ‎comparison ‎of them. Furthermore, three important criteria of image quality, namely accuracy, resolution and contrast, are quantitatively investigated for the aforementioned methods. The three quantitative methods of DBIM, CSI, and MLSM start with an initial guess of the scatterer profile and changing during an iterative process close to the actual scatterer. In spite of high amount of numerical computation in these methods, the resolution and contrast are high compared to the other two methods. As will be seen, the DBI and CSI methods are capable of completely resolving the two objects at 0.4λ and MLSM at 0.07λ. And also, MLSM provides more accurate reconstructions than the two others since the investigation domain is deformed to a smaller one.

کلیدواژه‌ها [English]

  • Microwave Imaging
  • Electromagnetic Scattering
  • Reconstruction Methods
  • Inverse Scattering
[1] Pastorino, Matteo, and Andrea Randazzo. “Microwave Imaging Methods and Applications.”, Artech House, 2018.##
[2]   Tournier, Pierre-Henri, et al. "Numerical Modeling and High-Speed Parallel Computing: New Perspectives on Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring." IEEE Antennas and Propagation Magazine, vol. 59, no. 5, pp. 98-110, 2017.##
[3]  Akıncı, Mehmet Nuri, Mehmet Çayören, and Ersin Göse, "Qualitative microwave imaging of breast cancer with contrast agents," Physics in Medicine & Biology, vol. 64.no.11, 2019.##
[4]  M. Ostadrahimi, P. Mojabi, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, “A novel microwave tomography system based on the scattering probe technique,” Instrumentation and Measurement, IEEE Transactions on, vol. 61, no. 2, pp. 379–390, 2012.##
 [5] N. Zarnaghi Naghsh, A. Ghorbani, H. ‎Amindavar, "A Novel Method for Multistatic UWB Radar-Based Microwave Breast Cancer Imaging ", Journal of Radar, vol. 3, no. 4, 2016,(In Persian(.##
 [6] S. Y. Chen, W. C. Chew, and W. D. Kennedy, "Inversion of 6FF40 induction tool measurement using the distorted born iterative method," in Proc. Int. Geosci. Remote Sens. Symp. (IGARSS), vol. I-V. Singapore, 1997, pp. 938–941‎.‎##
[7] M. Eskandari, R. Safian, and M. Dehmollaian, “Three dimensional nearfield microwave imaging using hybrid linear sampling and level set methods in a medium with compact support,” Antennas and Propagation,IEEE Transactions on, vol. 62, no. 10, 2014.‎##
 [8] F.-C. Chen and W. C. Chew, “Experimental verification of super resolution in nonlinear inverse scattering,” Applied physics letters, vol. 72, no. 23, pp. 3080–3082, 1998.‎##
 [9] W. C. Chew and Y. M. Wang, “An iterative solution of the two dimensional electromagnetic inverse scattering problem,” Int. J. Imag. Syst. Technol., vol. 1, no. 1, pp. 100–108, 1989.##
[10] J. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge university press,1999, vol.3.##
[11] M. Eskandari and R. Safian, “Inverse scattering method   based on contour deformations using a fast marching method,” Inverse Problems, vol. 26, no. 9, p. 095002, 2010.‎##
[12] M.R. Eskandari, and M.  Dehmollaian, and R. Safian, “Simultaneous microwave imaging and parameter estimation using modified level-set method”, IEEE Transactions on Antennas and Propagation, vol. 64, no. 8, 3554-3564,2016.##
[13] M. R. Eskandari, R. Safian, M. Dehmollaian, "Modified level set method for accurate physical and geometrical reconstruction",  IEEE Antennas and Propagation Society International Symposium (APSURSI), 886-887, 2014.‎##
[14] C.Gabriel and S.Gabriel, “Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies”, 1996.##
‎[15] T. Rubæk, P. M. Meaney, P. Meincke, and K. D. Paulsen, “Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton’s method and the CGLS inversion algorithm,” IEEE Trans. Antennas Propag., vol. 55, no. 8, pp. 2320–2331, Aug. 2007.##
[16] P. Van Den Berg and R. Kleinman, “A total variation enhanced modified gradient algorithm for profile reconstruction,” Inverse Problems, vol. 11, no. 3, pp. 5–10, 1999.##
[17] P. Mojabi, J. LoVetri, and L. Shafai, “A multiplicative regularized Gauss–Newton inversion for shape and location reconstruction,” Antennas and Propagation, IEEE Transactions on, vol. 59, no. 12, pp. 4790–4802, 2011.##
[18] W. C. Chew and Y. M.Wang, “Reconstruction of              two-dimensional permittivity distribution using the distorted born iterative method,” IEEE Trans. Med. Imaging, vol. 9, no. 2, pp. 218–225, 1990.##
[19] P. M. Van Den Berg and R. E. Kleinman, “A contrast source inversion method,” Inverse problems, vol. 13, no. 6, p. 1607, 1997.##
[20] D. Colton, H. Haddar, and M. Piana, “The linear sampling method in inverse electromagnetic scattering theory,” Inverse problems, vol.19, no.6, p.S105, 2003.##
[21] A. J. Devaney, “Super-resolution processing of multi-static data using time reversal and music,” J. Acoust. Soc. Am, 2000.##