مکان‌یابی اهداف در رادارهای چند ورودی چند خروجی با آنتن‌های توزیع‌یافته

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی شریف

چکیده

در این مقاله، مسأله مکان‌یابی بیضوی اهداف در رادارهای چند ورودی چند خروجی با آنتن‌های توزیع‌یافته بررسی شده است. هدف مکان­یابی بیضوی، تخمین موقعیت هدف از روی دسته­ای از اندازه­گیری­های نویزی تأخیر بای­­استاتیک می­باشد. از آنجایی­که تخمین ML متناظر با مکان­یابی بیضوی مسأله­ای غیرمحدب می­باشد، استفاده از روش­های عددی برای حل آن می­تواند منجر به همگرایی به نقاط کمینه محلی شود. برای رفع این مشکل، در این مقاله تخمین­گرهایی (عموماً شکل­بسته) برای حل مسأله مکان­یابی ارائه شده است که این الگوریتم­ها برای همگرایی به پاسخ سراسری مشکلی نخواهند داشت. روش­های ارائه شده، از نظر عملکردی تا سطوح نسبتاً بالای نویز کارا بوده و به باند    کرامر-رائو می­رسند. این روش­ها دقت مکان­یابی بالاتری نسبت به روش­های موجود دارند. همچنین، با توجه به ذات شکل­بسته و جبری روش‌های ارائه­شده، پیچیدگی محاسباتی آن­ها بسیار پایین است. البته از این نظر، عملکرد سایر روش­های شکل­بسته موجود در ادبیات نیز مشابه می­باشد. لازم به‌ذکر است که ایده­های ارائه­شده در این مقاله می­تواند به‌عنوان پایه­ای برای ادامه پژوهش در حوزه مکان­یابی راداری در نظر گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Target Localization in MIMO Radars with Distributed Antennas

نویسندگان [English]

  • R. Amiri
  • F. Behnia
Sharif University of Technology
چکیده [English]

In this paper, the problem of elliptic target localization in distributed multiple-input multiple-output (MIMO) radars is investigated. The goal of elliptic localization is to estimate the target position from a set of noisy bistatic delay measurements. Since the maximum likelihood (ML) problem associated with elliptic localization is nonconvex, iterative methods can be trapped in local minimums, leading to inaccurate location estimation. To solve this problem, a number of (almost closed-form) estimators are proposed, which can locate the target without convergence concern. The proposed methods are efficient, achieving Cramer-Rao lower bound (CRLB) up to relatively high noise levels. These methods are of superior localization accuracy in comparison with the state-of-the-art methods. Furtheremore, according to the closed-form and algebraic nature of the proposed methods, they have very low computational complexity, which is similar to other existing closed-form methods in the literature. It should be noted that the ideas presented in this paper can be considered as a baseline for future research studies in the area of localization in radar systems.

کلیدواژه‌ها [English]

  • Target Localization
  • MIMO Radars
  • Cramer-Rao Lower Bound (CRLB)
  • Weighted Least Square Estimation
  • Bistatic Delay
[1]     E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini and R. Valenzuela, “MIMO radar: An idea whose time has come,” In Proc. of IEEE Radar Conf., pp.71-78, Apr. 2004.##
[2]     J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal Process. Mag., vol.24, no.5, pp.106-114, Sep. 2007.##
[3]     J. Li, P. Stoica, L. Xu, and W. Roberts, “On parameter identifiability of MIMO radar,” IEEE Signal Process. Lett., vol. 14, no. 12, pp. 968–971, Dec. 2007.##
[4]     M. Rossi, A. Haimovich, and Y. Eldar, “Spatial compressive sensing for MIMO radar,” IEEE Trans. Signal Process., vol. 62, no. 2, pp. 419–430, 2014.##
[5]     J. Yang, H. Chen, Z. Qiu, X. Li, and Z. Zhuang, “Effect of beam pattern performance for colocated multi-input multi-output radar transmitting correlated waveforms” IET Radar Sonar Navigat., vol. 7, no. 6, pp.681-692, 2013.##
[6]     A. Haimovich, R. Blum, and L. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp.116–129, Jan. 2008.##
[7]     H. Qian, R. S. Blum, and A. M. Haimovich, “Noncoherent MIMO radar for location and velocity estimation: More antennas means better performance,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3661–3680, Jul. 2010.##
[8]     A. Hassanien, S. A. Vorobyov, and A. B. Gershman, “Moving target parameters estimation in non-coherent MIMO radar systems,” IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2354–2361, May 2012.##
[9]     I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3873–3883, Oct. 2006.##
[10]  S. A. Zekavat and R. M. Buehrer, "Handbook of Position Location: Theory, Practice, and Advances," Eds. Hoboken, NJ, USA: Wiley, 2019.##
[11]  R. Amiri, H. Zamani, F. Behnia, and F. Marvasti, “Sparsity-aware target localization using TDOA/AOA measurements in distributed MIMO radars,” ICT Express, vol. 2, no. 1, pp. 23–27, 2016.##
[12]  R. Amiri, F. Behnia, and H. Zamani, “Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems,” IEEE Commun. Lett., 2017.##
[13]  S. A. R. Kazemi, R. Amiri, and F. Behnia, “Efficient convex solution for 3-D localization in MIMO radars using delay and angle measurements,” IEEE Commun. Lett., 2019.##
[14]  M. Einemo and H. C. So, “Weighted least squares algorithm for target localization in distributed MIMO radar,” Signal Process., vol. 115, pp. 144 – 150, 2015.##
[15]  M. Dianat, M. R. Taban, J. Dianat, and V. Sedighi, “Target localization using least squares estimation for MIMO radars with widely separated antennas,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 4, pp. 2730–2741, 2013.##
[16]  A. Noroozi and M. A. Sebt, “Target localization from bistatic range measurements in multi-transmitter multi-receiver passive radar,” IEEE Signal Process. Lett., vol. 22, no. 12, pp. 2445–2449, 2015.##
[17]  C. H. Park and J. H. Chang, “Closed-form localization for distributed MIMO radar systems using time delay measurements,” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 1480–1490, 2016.##
[18]  H. Yang and J. Chun, “An improved algebraic solution for moving target localization in noncoherent MIMO radar systems,” IEEE Trans. Signal Process., vol. 64, no. 1, pp. 258–270, 2016.##
[19]  R. Amiri, F. Behnia, and M. A. M. Sadr, “Efficient positioning in MIMO radars with widely separated antennas,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1569–1572, 2017.##
[20]  R. Amiri, F. Behnia, and M. A. M. Sadr, “Positioning in MIMO radars based on constrained least squares estimation,” IEEE Commun. Lett., vol. 21, no. 10, pp. 2222–2225, 2017.##
[21]  F. Zhang, Y. Sun, J. Zou, D. Zhang, and Q. Wan, “Closed-form localization method for moving target in passive multistatic radar network,” IEEE Sens. J., vol. 20, no. 2, pp. 980–990, 2019.##
[22]  H. Song, G. Wen, L. Zhu, and D. Li, “A novel TSWLS method for moving target localization in distributed MIMO radar systems,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2210–2214, 2019.##
[23]  R. Amiri, F. Behnia, and H. Zamani, “Closed-form positioning in MIMO radars with antenna location uncertainties,” IET Radar Sonar Navig., 2019.##
[24]  A. Noroozi, M. A. Sebt, and A. H. Oveis, “Efficient weighted least squares estimator for moving target localization in distributed MIMO radar with location uncertainties,” IEEE Syst. J., 2019.##
[25]  R. Amiri, F. Behnia, and A. Noroozi, “Efficient joint moving target and antenna localization in distributed MIMO radars,” IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4425–4435, 2019.##
[26]  A. Noroozi, R. Amiri, M. M. Nayebi, and A. Farina, “Efficient closedform solution for moving target localization in MIMO radars with minimum number of antennas,” IEEE Trans. Signal Process., 2020.##
[27]  W. Hahn and S. Tretter, "Optimum processing for delay-vector estimation in passive signal arrays," IEEE Trans. Inform. Theory, vol. 19, pp. 608-614, 1973.##
[28]  W. R. Hahn, "Optimum signal processing for passive sonar range and bearing estimation," Journal of the Acoustical Society of America, vol. 58, pp. 201-207, 1975.##
[29]  S. M. Kay, Fundamentals of statistical signal processing, Estimation theory, Prentice Hall, 1993.##
[30]  P. Stoica and K. Sharman, “Maximum likelihood methods for direction of arrival estimation,” IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 7, pp. 1132–1143, 1990.##
[31]  K. C. Ho and W. Xu, “An accurate algebraic solution for moving source location using TDOA and FDOA measurements,” IEEE Trans. Signal Process., vol. 52, no. 9, pp. 2453–2463, 2004.##
[32]  J. J. Mor, “Generalizations of the trust region subproblem,” Optim. Methods Softw., vol. 2, pp. 189–209, 1993.##
[33]  A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source localization problems,” IEEE Trans. signal process., vol. 56, no. 5, pp. 1770–1778, 2008.##
[34]  R. A. Horn and C. R. Johnson, "Matrix analysis," Cambridge university press, 2013.##
[35]  A. Yeredor, “On using exact joint diagonalization for noniterative approximate joint diagonalization,” IEEE Signal Process. Lett., vol. 12, no. 9, pp. 645–648, 2005.##
[36]  M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined convex programming,” 2008.##
[37]  T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear minimization subject to bounds,” SIAM J. Optim., vol. 6, no. 2, pp. 418–445, 1996.##
H. Godrich, A. M. Haimovich, and R. S. Blum, “Target localization accuracy gain in MIMO radar-based systems,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2783–2803, 2010.##