[1] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini and R. Valenzuela, “MIMO radar: An idea whose time has come,” In Proc. of IEEE Radar Conf., pp.71-78, Apr. 2004.##
[2] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal Process. Mag., vol.24, no.5, pp.106-114, Sep. 2007.##
[3] J. Li, P. Stoica, L. Xu, and W. Roberts, “On parameter identifiability of MIMO radar,” IEEE Signal Process. Lett., vol. 14, no. 12, pp. 968–971, Dec. 2007.##
[4] M. Rossi, A. Haimovich, and Y. Eldar, “Spatial compressive sensing for MIMO radar,” IEEE Trans. Signal Process., vol. 62, no. 2, pp. 419–430, 2014.##
[5] J. Yang, H. Chen, Z. Qiu, X. Li, and Z. Zhuang, “Effect of beam pattern performance for colocated multi-input multi-output radar transmitting correlated waveforms” IET Radar Sonar Navigat., vol. 7, no. 6, pp.681-692, 2013.##
[6] A. Haimovich, R. Blum, and L. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag., vol. 25, no. 1, pp.116–129, Jan. 2008.##
[7] H. Qian, R. S. Blum, and A. M. Haimovich, “Noncoherent MIMO radar for location and velocity estimation: More antennas means better performance,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3661–3680, Jul. 2010.##
[8] A. Hassanien, S. A. Vorobyov, and A. B. Gershman, “Moving target parameters estimation in non-coherent MIMO radar systems,” IEEE Trans. Signal Process., vol. 60, no. 5, pp. 2354–2361, May 2012.##
[9] I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3873–3883, Oct. 2006.##
[10] S. A. Zekavat and R. M. Buehrer, "Handbook of Position Location: Theory, Practice, and Advances," Eds. Hoboken, NJ, USA: Wiley, 2019.##
[11] R. Amiri, H. Zamani, F. Behnia, and F. Marvasti, “Sparsity-aware target localization using TDOA/AOA measurements in distributed MIMO radars,” ICT Express, vol. 2, no. 1, pp. 23–27, 2016.##
[12] R. Amiri, F. Behnia, and H. Zamani, “Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems,” IEEE Commun. Lett., 2017.##
[13] S. A. R. Kazemi, R. Amiri, and F. Behnia, “Efficient convex solution for 3-D localization in MIMO radars using delay and angle measurements,” IEEE Commun. Lett., 2019.##
[14] M. Einemo and H. C. So, “Weighted least squares algorithm for target localization in distributed MIMO radar,” Signal Process., vol. 115, pp. 144 – 150, 2015.##
[15] M. Dianat, M. R. Taban, J. Dianat, and V. Sedighi, “Target localization using least squares estimation for MIMO radars with widely separated antennas,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 4, pp. 2730–2741, 2013.##
[16] A. Noroozi and M. A. Sebt, “Target localization from bistatic range measurements in multi-transmitter multi-receiver passive radar,” IEEE Signal Process. Lett., vol. 22, no. 12, pp. 2445–2449, 2015.##
[17] C. H. Park and J. H. Chang, “Closed-form localization for distributed MIMO radar systems using time delay measurements,” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 1480–1490, 2016.##
[18] H. Yang and J. Chun, “An improved algebraic solution for moving target localization in noncoherent MIMO radar systems,” IEEE Trans. Signal Process., vol. 64, no. 1, pp. 258–270, 2016.##
[19] R. Amiri, F. Behnia, and M. A. M. Sadr, “Efficient positioning in MIMO radars with widely separated antennas,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1569–1572, 2017.##
[20] R. Amiri, F. Behnia, and M. A. M. Sadr, “Positioning in MIMO radars based on constrained least squares estimation,” IEEE Commun. Lett., vol. 21, no. 10, pp. 2222–2225, 2017.##
[21] F. Zhang, Y. Sun, J. Zou, D. Zhang, and Q. Wan, “Closed-form localization method for moving target in passive multistatic radar network,” IEEE Sens. J., vol. 20, no. 2, pp. 980–990, 2019.##
[22] H. Song, G. Wen, L. Zhu, and D. Li, “A novel TSWLS method for moving target localization in distributed MIMO radar systems,” IEEE Commun. Lett., vol. 23, no. 12, pp. 2210–2214, 2019.##
[23] R. Amiri, F. Behnia, and H. Zamani, “Closed-form positioning in MIMO radars with antenna location uncertainties,” IET Radar Sonar Navig., 2019.##
[24] A. Noroozi, M. A. Sebt, and A. H. Oveis, “Efficient weighted least squares estimator for moving target localization in distributed MIMO radar with location uncertainties,” IEEE Syst. J., 2019.##
[25] R. Amiri, F. Behnia, and A. Noroozi, “Efficient joint moving target and antenna localization in distributed MIMO radars,” IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4425–4435, 2019.##
[26] A. Noroozi, R. Amiri, M. M. Nayebi, and A. Farina, “Efficient closedform solution for moving target localization in MIMO radars with minimum number of antennas,” IEEE Trans. Signal Process., 2020.##
[27] W. Hahn and S. Tretter, "Optimum processing for delay-vector estimation in passive signal arrays," IEEE Trans. Inform. Theory, vol. 19, pp. 608-614, 1973.##
[28] W. R. Hahn, "Optimum signal processing for passive sonar range and bearing estimation," Journal of the Acoustical Society of America, vol. 58, pp. 201-207, 1975.##
[29] S. M. Kay, Fundamentals of statistical signal processing, Estimation theory, Prentice Hall, 1993.##
[30] P. Stoica and K. Sharman, “Maximum likelihood methods for direction of arrival estimation,” IEEE Trans. Acoust. Speech Signal Process., vol. 38, no. 7, pp. 1132–1143, 1990.##
[31] K. C. Ho and W. Xu, “An accurate algebraic solution for moving source location using TDOA and FDOA measurements,” IEEE Trans. Signal Process., vol. 52, no. 9, pp. 2453–2463, 2004.##
[32] J. J. Mor, “Generalizations of the trust region subproblem,” Optim. Methods Softw., vol. 2, pp. 189–209, 1993.##
[33] A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source localization problems,” IEEE Trans. signal process., vol. 56, no. 5, pp. 1770–1778, 2008.##
[34] R. A. Horn and C. R. Johnson, "Matrix analysis," Cambridge university press, 2013.##
[35] A. Yeredor, “On using exact joint diagonalization for noniterative approximate joint diagonalization,” IEEE Signal Process. Lett., vol. 12, no. 9, pp. 645–648, 2005.##
[36] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined convex programming,” 2008.##
[37] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear minimization subject to bounds,” SIAM J. Optim., vol. 6, no. 2, pp. 418–445, 1996.##
H. Godrich, A. M. Haimovich, and R. S. Blum, “Target localization accuracy gain in MIMO radar-based systems,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2783–2803, 2010.##