تخمین زاویه ورود ناهمدوس با استفاده از تخمین فرکانس

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی قم

2 دانشگاه سویینبورن استرالیا

چکیده

در مساله تخمین زاویه ورود ناهمدوس، هدف تعیین زاویه ورود فقط بر اساس اندازه سیگنال دریافتی از حسگرهای آرایه است. مزیت روش ناهمدوس این است که با وجود خطاهای فازی موجود در حسگرها و یا شیفت­دهنده‌های فاز، می‌توان زاویه ورود را تخمین زد و حساسیت روش نسبت به خطاهای فازی کم است. در این مقاله، از یک روش تخمین فرکانس برای تخمین زاویه ورود استفاده شده است که به سادگی با روش­های مبتنی بر تبدیل فوریه گسسته سریع، قابل پیاده­سازی است. همچنین، برای رفع ابهام و حل معادلات غیرخطی از یک هدف مرجع با توان ارسالی بالا استفاده شده است. نتایج شبیه­سازی در هر دو حالت آرایه خطی و آرایه دو بعدی صفحه‌‌ای، کارآیی روش ارایه شده و مقاوم بودن نسبت به خطای فاز را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Non-coherent Direction of Arrival Estimation via Frequency Estimation

نویسنده [English]

  • hadi zayyani 1
1 دانشگاه صنعتی قم
چکیده [English]

In non-coherent Direction Of Arrival (DOA) estimation, the goal is to determine DOA based only on the magnitude of the received sensor array signal. The advantage of the non-coherent DOA estimation is its robustness against phase errors; despite phase errors present in both sensors and phase shifters, direction of arrival can be estimated. In this paper, DOA is estimated using a frequency estimation technique which can be simply implemented by discrete Fast Fourier Transform (FFT) methods. In addition, for removing the ambiguity and solving the nonlinear equations, a reference target with high power emission is used. Simulation results, in both linear and plane array cases show the efficiency and robustness of the proposed algorithm against phase errors.

کلیدواژه‌ها [English]

  • Direction of Arrival Estimation
  • Non-Coherent
  • Linear Array
  • Rectangular Array
  • Frequency Estimation
  • Fast Fourier Transform

[1] M.Greco, F. Gini, A. Farina, and L. Timmoneri, “Direction-of-arrival estimation in radar systems: moving window against approximate maximum likelihood estimator,” IET Radar, Sonar Navigation, vol. 3, no. 5, pp. 552-557, 2009.
[2] J. Thompson, P. Grant, B. Mulgrew, and R. Rajagopal, “Generalized algorithm for DOA estimation in a passive sonar,” IEE Proceedings F, Radar and Signal Processing, vol. 140, no. 5, pp. 339-340, 1993.
[3] L. Godara, “Application of antenna arrays to mobile communications. ii. Beam-forming and direction-of-arrival considerations,” Proceedings of the IEEE, vol. 85, no. 8, pp. 1195-1245, 1997.
[4] D. H. Johnson and D. E. Dudgeon, “Array signal processing: Concepts and Techniques,” 1992.
[5] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408-1418, 1969.
[6] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas and Propagation, vol. 34, no. 3, pp. 276-280, 1986.
[7] R. Richard and T. Kailath, “ESPIRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoustic, Speech, Signal Processing, vol. 37, no. 3, pp. 984-995, 1989.
[8] D. Malioutov, M. Cetin, and A. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 3010-3022, 2005.
[9] J. Zheng and M. Kaveh, “Sparse spatial spectral estimation: A covariance fitting algorithm, performance and regularization,” IEEE Trans. Signal Processing, vol. 61, no. 11, pp. 2767-2777, 2013.
[10] A. Gurbuz, V. Cevher, and J. McClellan, “Bearing estimation via spatial sparsity using compressive sensing,” IEEE Trans. Aerospace and Electronic Systems, vol. 48, no. 2, pp. 1358-1369, 2012.
[11] M. Rossi, A. Haimovich, and Y. C. Eldar, “Spatial compressive sensing for MIMO radar,” IEEE Trans. Signal Processing, vol. 62, no. 2, pp. 419-430, 2014.
[12] R. Fan, Q. Wan, F. Wen, H. Wang, and Y. Liu, “Direction-of-arrival estimation based on magnitude-only samples with partly calibrated sensors array,” International Journal of Electronics Letters, published online, pp. 18-23, 2013.
[13] H. Kim, A. M. Haimovich, and Y. C. Eldar, “Non-coherent direction of arrival estimation from magnitude-only measurements,” IEEE Signal Processing Letters, vol. 22, no. 7, pp. 925-929, 2015.
[14] Y. Shechtman, A. Beck, and Y. C.Eldar, “GESPAR: Efficient phase retrieval of sparse signals,” IEEE Trans. Signal Processing, vol. 62, no. 4, pp. 928-938, 2014.
[15] W. Jiang and A. M Haimovich, “Cramer-Rao bound and approximate maximum likelihood estimation for non-coherent direction of arrival problem,” In Proc. of 2016 Annual Conference on Information Science and Systems (CISS), pp. 506-510, 2016.
[16] C. C. Yeh, J. H. Lee, and Y. M Chen, “Estimating two-dimensional angles of arrival in coherent source environment,” IEEE Trans. Acoustic. Speech Signal Processing, vol. 37, no. 1, pp. 153-155, 1989.
[17] Gu, J. F., Wei, P.., Tai, H. M., “2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix” ,Signal Processing, Vol.88, No. 1, pp.75-85, 2008.
[18] F. J. Chen, S. Kwong, and C. W Kok, “ESPIRIT-like two-dimensional DOA estimation for coherent signals,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 3, pp. 1477-155, 1484.
[19] P. Heidenreiche, A. M. Zoubir, and M. Rubsamen, “Joint 2-D DOA estimation and phase calibration for uniform rectangular array,” IEEE Trans. Signal Processing, vol. 60, no. 9, pp. 4683-4693, 2012.
[20] X. Xu and Z. Ye, “Two-dimensional direction of arrival estimation by exploiting the symmetric configuration of uniform rectangular array,” IET Radar Sonar Navig, vol. 6, no. 5, pp. 307-313, 2012.
[21] F. F. Shen, Y. M. Liu, G. H. Zhao, X. Y. Chen, and X. P. Li, “Sparsity-based Off-grid DOA estimation with uniform rectangular array,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3384-3390, 2018.
[22] M. Omer, N. Tayem, and A. A. Hossain, “Two Uniform linear arrays for Non-coherent and coherent sources for two dimensional source localization,” Progress in Electromagnetics Research Letters, vol. 47, pp. 31-39, 2014.
[23] H. Tao, J. Xin, J. Wang, N. Zheng, and A. Sano, “Two-dimensional direction estimation for a mixture of noncoherent and coherent signals,” IEEE Trans. Signal Processing, vol. 63, no. 2, pp. 318-333, 2015f.
[24] R. Jagannath and K. Hari, “Block sparse estimator for grid matching in single snapshot doa estimation,” IEEE Signal Processing Letters, vol. 20, no. 11, pp. 1038-1041, 2013.
[25] Y. Chen and E. Candes, “The Projected power method: an efficient algorithm for joint alignment from pairwise differences,” Submitted to Arxiv, 2016.
[26] J. D. Kraus, “The corner-reflector antenna,” Proceeding of IRE, vol. 28, no. 11, pp. 513-519, Nov. 1940.
[27] M. I. Skolnik, “Introduction to radar systems,” McGraw-Hill, third edition, 2002.
[28] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007.
[29] S. A. Mousavi, M. Farhang, M. A. Masnadi Shirazi, “A Comparison of the Tracking Performance of Cognitive Co-Located MIMO and Phased-Array Radars,” Journal of Radar, vol. 5, no. 3, pp. 51-60, 2017 (In Persian).