تخمین زاویه ورود در حضور تزویج متقابل نامعلوم در آرایه دایروی یکنواخت با آنتن‌های جهتی

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه شاهد

چکیده

در این مقاله، استفاده از آنتن‌های جهتی برای افزایش دقت تخمین زاویه ورود در حضور تزویج مقابل در آرایه‌ دایروی یکنواخت پیشنهاد شده است. آرایه‌ دایروی یکنواخت به دلیل توانایی در تخمین زاویه‌ ورود به صورت یکنواخت در محدوده‌ 0 الی 360 درجه از اهمیت بالایی برخوردار است. از طرفی با توجه به ساختار آرایه‌ دایروی یکنواخت، در مقایسه با آرایه‌ خطی یکنواخت، اثر تزویج در آن شدیدتر است. در این مقاله نشان خواهیم داد که استفاده از آنتن‌های جهتی، موجب بهبود دقت تخمین زاویه‌ ورود می‌گردد. به منظور جبران اثر تزویج متقابل بر عملکرد تخمین زاویه‌ ورود از کالیبراسیون خودکار استفاده می‌کنیم. در روش پیشنهاد شده، زاویه‌ ورود و ضرایب تزویج با یک روند تکراری تخمین زده می‌شوند. نتایج شبیه‌سازی نشان می‌دهد که استفاده از آنتن‌های جهتی و روش پیشنهادی جهت تخمین ضرایب تزویج، دقت تخمین زاویه‌ ورود را در حضور تزویج متقابل به صورت قابل ملاحظه‌ای بهبود می‌بخشد.

کلیدواژه‌ها


عنوان مقاله [English]

DoA Estimation in the Presence of the Unknown Mutual Coupling Using a UCA with Directive Antennas

نویسندگان [English]

  • Mahmoud Ferdosizade Nayini
  • yaghoub Eghbali
  • Farhad Moradi
Shahed
چکیده [English]

In this paper, a method is proposed to compensate the effect of mutual coupling in a Uniform Circular Array (UCA) with directional antennas. UCA is a suitable array geometry, because it leads to uniform precision of Direction of Arrival (DoA) estimation over the entire range of azimuth angles in [0,360] degree. However, the mutual coupling effect of a UCA can be much stronger than that of a uniform linear array (ULA). In this paper, we will show that using directive antennas will improve the accuracy of direction of arrival estimation. In order to reduce the effect of mutual coupling on the performance of direction of arrival estimation, an auto-calibration method will be proposed. In the proposed algorithm, direction of arrival and mutual coupling matrix are estimated using an iterative method. Simulation results show that a UCA with application of the proposed algorithm has a better performance in comparison to the array with isotropic antennas at the presence of mutual coupling.

کلیدواژه‌ها [English]

  • Signal Direction of Arrival
  • Uniform Circular Array
  • Directive Antenna and Mutual Coupling

[1] S. A. Mousavi, M. Farhang, and M. A. Masnadi Shirazi, “A Comparison of the tracking performance of cognitive colocated MIMO and phased-array radars,” Journal of Radar,
vol. 5, no. 3, pp. 51-60, 2017. (in Persian)
[2] M. Abidi, Y. Norouzi, and O. Salimi, “Passive localization of secondary surveillance radar interrogators,” Journal of Radar, vol. 3, no. 4, pp. 11-23, 2016. (in Persian)
[3] A. Gholipour, B. Zakeri, and Kh. Mafinezhad, “Nearfield source localization in non-homogeneous
environments,” Journal of Radar, vol. 4, no. 1, pp. 49-56, 2016. (in Persian)
[4] H. Krim and M. Viberg, “Two decades of array signal processing research,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67-94, 1996.
[5] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.
[6] D. Zhang, Y. Zhang, G. Zheng, C. Feng, and J. Tang, “Improved DOA estimation algorithm for co-prime linear arrays using root-muzic algorithm,” Electronics Letters, vol. 53, no. 18, pp. 1277-1279, 2017.
[7] G. Liu, H. Chen, X. Sun, and R. C. Qiu, “Modified MUSIC Algorithm for DOA Estimation with Nyström
Approximation,” IEEE Sensors Journal, vol. 16, no. 12, pp. 4673-4674, June 2016.
[8] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408-1418, 1969.
[9] X. Zhang, Z. He, B. Liao, X. Zhang, and W. Peng, “Robust Quasi-Adaptive Beamforming Against Direction-of-Arrival Mismatch,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 3, pp. 1197-1207, 2018.
[10] X. Wang and M. Amin, “Design of optimum sparse array for robust MVDR beamforming against DOA mismatch,” 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1-5, 2017.
[11] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010-3022, 2005.
[12] C. Zhou, Y. Gu, Y. D. Zhang, Z. Shi, T. Jin, and X. Wu,“Compressive sensing-based coprime array direction-ofarrival estimation,” IET Communications, vol. 11, no. 11, pp. 1719-1724, 2017.
[13] X. Yang, C. C. Ko, and Z. Zheng, “Direction-of-arrival estimation of incoherently distributed sources using Bayesian compressive sensing,” IET Radar, Sonar & Navigation, vol. 10, no. 6, pp. 1057-1064, 2016.
[14] M. Hawes, L. Mihaylova, F. Septier, and S. Godsill, “Bayesian Compressive Sensing Approaches for Direction of Arrival Estimation with Mutual Coupling Effects,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 3, pp. 1357-1368, 2017.
[15] L. Lu and H. C. Wu, “Novel Robust Direction-of-Arrival-Based Source Localization Algorithm for Wideband Signals,” IEEE Transactions on Wireless Communications, vol. 11, no. 11, pp. 3850-3859, 2012.
[16] L. Lu and H. C. Wu, “Robust Expectation Maximization Direction-of-Arrival Estimation Algorithm for Wideband Source Signals,” IEEE Transactions on Vehicular Technology, vol. 60, no. 5, pp. 2395-2400, 2011.
[17] L. Lu, H. C. Wu, and S. C. H. Huang, “Robust Novel EM-Based Direction-of-Arrival Estimation Technique for Wideband Source Signals,” International Conference on Communications and Mobile Computing, pp. 72-76, 2010.
[18] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp. 1553–1560, 1988.
[19] P. Ioannides and C. A. Balanis, “Mutual coupling in adaptive circular arrays,” IEEE Antennas and Propagation Society International Symposium, pp. 403-406, 2004.
[20] B. Liao and S. C. Chan, “Adaptive beamforming for uniform linear arrays with unknown mutual coupling,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 464-467, 2012.
[21] I. J. Gupta and A. A. Ksienski, “Effect of mutual coupling on the performance of adaptive arrays,” IEEE Transactions on Antennas and Propagation, vol. 31, no. 5, pp. 785-791, 1983.
[22] T. Su, K. Dandekar, and H. Ling, “Simulation of mutual coupling effect in circular arrays for direction-finding applications,” Microwave and Optical Technology Letters, vol. 26, no. 5, pp. 331-336, 2000.
[23] C. C. Yeh, M. L. Leou, and D. R. Ucci, “Bearing estimations with mutual coupling present,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 10, pp. 1332–1335, 1989.
[24] M. Wang, X. Ma, S. Yan and C. Hao, “An Autocalibration Algorithm for Uniform Circular Array with Unknown Mutual Coupling,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 12-15, 2016.
[25] J. Pierre and M. Kaveh, “Experimental performance of calibration and direction-finding algorithms,” In Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), pp. 1365-1368, 1991.
[26] C. M. S. See, “Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases,” Electronics Letters, vol. 30, no. 5, pp. 373-374, 1994.
[27] C. M. S. See, “Method for array calibration in high-resolution sensor array processing,” IEE Proceedings - Radar, Sonar and Navigation, vol. 142, no. 3, pp. 90-96, 1995.
[28] B. C. Ng and C. M. S. See, “Sensor-array calibration using a maximum likelihood approach,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 6, pp. 827-835, 1996.
[29] B. Friedlander and A. J. Weiss, “Direction finding in the presence of mutual coupling,” IEEE Transactions on Antennas and Propagation, vol. 39, no. 3, pp. 273-284, 1991.
[30] F. Sellone and A. Serra, “A novel online mutual coupling compensation algorithm for uniform and linear arrays,” IEEE Transactions on Signal Processing, vol. 55, no. 2, pp. 560-573, 2007.
[31] Z. F. Ye and C. Liu, “2-D DOA estimation in the presence of mutual coupling,” IEEE Transactions on Antennas and Propagation, vol. 56, no. 10, pp. 3150-3158, 2008.
[32] M. Lin and L. Yang, “Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling,” IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 315-318, 2006.
[33] C. Qi, Y. Wang, Y. Zhang, and H. Chen, “DOA estimation and self-calibration algorithm for uniform circular array,” Electronics Letters, vol. 41, no. 20, pp. 1092-1094, 2005.
[34] J. L. Xie, Z. S. He, and H. Y. Li, “A fast DOA estimation algorithm for uniform circular arrays in the presence of unknown mutual coupling,” Progress in Electromagnetics Research C, vol. 21, pp. 257-271, 2011.
[35] A. M. Elbir, “A Novel Data Transformation Approach for DOA Estimation with 3-D Antenna Arrays in the Presence of Mutual Coupling,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2118-2121, 2017.
[36] B. R. Jackson, S. Rajan, B. J. Liao, and S. Wang, “Direction of Arrival Estimation Using Directive Antennas in Uniform Circular Arrays,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 2, pp. 736-747, 2015.