پیاده‌سازی نرم افزار محاسبه کننده سطح مقطع راداری با استفاده از تئوری نور فیزیکی (RCSPO)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 نوشیروانی بابل

2 صنعتی نوشیروانی

چکیده

محاسبه سطح مقطع راداری (RCS)، از موضوعات مهم برای پنهان‌سازی و شناسایی اهداف می‌باشد. هزینه بالای اندازه‌گیری RCS در فضای آزاد، طراحی یک نرم‌افزار برای این کار را اجتناب‌ناپذیر کرده‌است. در این مقاله طراحی یک نرم‌افزار مناسب به نام RCSPO با استفاده از تئوری نور فیزیکی برای محاسبه سطح مقطع راداری اجسام پیچیده هادی و عایق در فرکانس‌های بالا، مورد تحقیق قرار گرفته ‌است. در روش معرفی شده، ابتدا جسم مورد نظر با استفاده از نرم‌افزار آباکوس مش‌بندی می‌گردد. سپس با انتقال اطلاعات هر مش به نرم‌افزار MATLAB، تئوری نور فیزیکی بر آن اعمال گردیده و با مجموع میدان‌های الکتریکی دیده شده از هر مش، سطح مقطع راداری کل جسم به دست می‌آید. نتایج شبیه‌سازی نشان می‌دهد الگوریتم ارائه‌شده، با نتایج نرم‌افزار CST-MS مطابقت مناسبی دارد و مشخصات RCS را با پیچیدگی کمتر نسبت به روش‌های قبل، در زمان کمتری تعیین می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Implementation of RCS Software Calculator Using Physical Optics Theorem (RCSPO)

نویسندگان [English]

  • Mehran Taslimi 1
  • Ataollah Ebrahim Zadeh 2
1
2
چکیده [English]

Radar cross section (RCS) calculation is an important issue of objects stealth and identification.
It is necessary to design the RCS software because of the high cost of RCS measurements in
practice. In this paper, designing of efficient software using physical optics theorem for radar
cross section calculation of the complex perfect electric conductors or complex dielectric objects
for high frequencies is investigated. In this method, first the object will be meshed in Abaqus
Software. Then the obtained data of every mesh is transferred to MATLAB Software and, after
that, the physical optics theorem is applied for every mesh, with considering the summation of
electric fields that is seen from each mesh. As the result, the radar cross section of total object
will be obtained. Simulations results show the proposed method has good agreement with
CST-MS results and determines the RCS of the objects with lower complexity in the lower time
consuming.

کلیدواژه‌ها [English]

  • Radar cross section
  • Physical Optics Theorem
  • Complex Objects
  • Meshing in Abaqus
  1. S. Hajisadeghian and A. Sheikhi, “Detection of Sea Target Using Satellite Radiation Using the Weights of Adaptive Filter,” Journal of Radar, vol. 1, no. 1, pp. 35-47, 2012 (In persian).
  2. M. Jalilvand and H. Abiri, “Echo Area of an Aircraft Model Using GTD-EC Method,” Int. Conf. on Computer as a Tool, pp. 22-24, 2005.
  3. A. Toflove and S. C. Hagness, “Computational Electrodynamics,” Artech House, 2005.
  4. W. C. Gibson, “The Method of Moments in Electromagnetics,” CRC Press, 2015.
  5. E. F. Knott, J. F. Shaeffer, and M. Tuley, “Radar Cross Section,” Sci. Tech. Publishing, 2004.
  6. D. H. Duan, J. P. Mahon, and Y. Rahmat-Samii, “A Comparative Study Among GTD and PTD Techniques for Circular Disks,” Antennas and Propagation Society International Symposium, pp. 1578-1581, 1990.
  7. H. Kobayashi and S. Shi, “RCS Calculation Software for Large and Complex Obstacles,” Int. Conf. on Electronics, Communications and Control (ICECC), pp. 975-978, 2011.
  8. J. Xin and W. BaoFa, “RCS Analysis and Calculation System in All-Band Region Based on Object-Oriented and Visualization Design,” CIE Int. Conf. on Radar Proceedings, pp. 869 – 873, 2001.
  9. J. C. Smit, “SigmaHat: A Toolkit for RCS Signature Studies of Electrically Large Complex Objects,” IEEE Radar Conference, pp. 446-451, 2015.
  10. N. Altin and E. Yazgan, “The Calculation of Back Scattering Field of Unmanned Air Vehicle,” PIERS Proceedings, pp.1460-1463, 2009.
  11. C. A. Balanis, “Advanced Engineering Electromagnetics,” John Wiley & Sons, 2012.
  12. J. G. Meana, J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, “Wave by and Using the Modified Equivalent Current Approximation (MECA),” IEEE Transactions on Antennas and Propagation, vol. 58, no. 11, pp. 3757-3761, 2010.
  13. J.G. Meana, J. A. Martinez-Lorenzo, C. Rappaport, and F. Las-Heras, “Modified Equivalent Current Approximation (MECA) Applied to Radioelectric Coverage Evaluation in Rural Scenarios,” In Proc. of Euro. Conf. on Antennas and Propagation (EuCAP), pp. 12-16, 2010.
  14. J. Guti rrez-Meana, J.A. Mart nez-Lorenzo, and F. Fernando Las-Heras, “High Frequency Techniques: the Physical Optics Approximation and the Modified Equivalent Current Approximation (MECA),” Electromagnetic Waves Propagation in Complex Matter, In Tech., 2011.
  15. H. Gomez-Sousa, J. A. Martinez-Lorenzo, and O. Rubinos Lopez, “Three-Dimensional Wedge Diffraction Correction Deduced by the Stationary Phase Method on the Modified Equivalent Current Approximation (MECA),” Progress in Electromagnetics Research , vol. 23, pp. 207-227, 2012.
  16. F. Saez de Adana, O. Gutierrez, I. Gonzalez, M. F. Catedra, and L. Lozano, “Practical Applications of Asymptotic Techniques in Electromagnetics,” Artech Housse, 2011.
  17. N. A. Albayrak, “RCS Computations with PO/PTD for Conduting and Impedance Objects Modeled as Large Flat Plates,” M. Sc. Thesis, Bilkent university, Ankara, BS, 2005.
  18. F. Chatzigeorgiadis, “Delopment of Code for A Physical Optics Radar Cross Section Prediction and Analysis Application,” M.Sc. Thesis, Naval Postgraduate School, Monterey, BS, 2004.
  19. F. Saez de Adana, I. Gonz ´ alez, O. Guti´ errez, P. Lozano, and M. Atedra, “Method Based On Physical Optics For The Computation On the Radar Cross Section Including Diffraction And Double Effects of Metallic And Absorbing Bodies Modeled By Parametric Surfaces,” IEEE Transactions on Antennas and