مکان یابی منابع میدان نزدیک در محیط های ناهمگن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشگاه صنعتی نوشیروانی بابل

چکیده

مکان‌یابی منابع یکی از مسائل مهم در زمینه پردازش سیگنال‌های آرایه‌ای در کاربردهای راداری و سوناری است. کارآیی الگوریتم-های موجود برای مکان‌یابی در شرایط واقعی به‌شدت کاهش می‌یابد. یکی از شرایطی که باعث این کاهش کارآیی می‌شود، تلفات همبستگی موج منتشرشده در اثر عبور از محیط ناهمگن است. در این مقاله روشی برای مکان‌یابی منابع میدان نزدیک شامل تخمین زاویه ورود سیگنال و فاصله در حضور ناهمگنی محیط ارائه شده‌است. با توجه به نتایج شبیه‌سازی‌های انجام‌شده، مشاهده می‌شود روش ارائه‌شده خطای کمی را نسبت به روش موجود برای مکان‌یابی منابع میدان نزدیک دارد و می توان امیدوار بود که سیستم ارائه در این کار بتوانددر رادارهای آرایه فازی جهت یاب استفاده گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Near-Field source localization in Non-Homogeneous Environments

نویسندگان [English]

  • Atefeh Gholipour 1
  • Bijan Zakeri 2
  • Khalil Mafinejad 1
1
2
چکیده [English]

Source localization is an essential part of array signal processing including radar, sonar, seismology and oceanography applications. The performance of the presented source localization methods are degraded substantially in practical situations. One of the conditions which decreases the performance of these methods, is the coherent loss caused by the propagation of the wavefront through random nonhomogeneous media. In this paper, a near-field source localization algorithm including direction of arrival and range estimation is presented in nonhomogeneous media. Simulation results show the performance of the proposed algorithm which has a lower estimation error in source localization of near field sources.

کلیدواژه‌ها [English]

  • Source Localization
  • Direction-of-arrival
  • Nonhomogeneous media
  • imperfect spatial coherence
  • multiplicative noise
  1. R. O. Schmidt, "Multiple emitter location and signal
  2. parameter estimation," IEEE Trans. Antennas Propag.,
  3. vol. 34, no. 3, pp. 276-280, 1986.
  4. R. Roy, A. Paulraj, and T. Kailath, "ESPRIT-A
  5. subspace rotation approach to estimation of parameters
  6. of cisoids in noise," IEEE Trans. Acoust., Speech,
  7. Signal Process., vol. 34, no. 5, pp. 1340-1342, 1986.
  8. J. C. Chen, R. E. Hudson, and Y. Kung, “Maximum
  9. likelihood source localization and unknown sensor
  10. location estimation for wideband signals in the nearfield,”
  11. IEEE Trans. Signal Process., vol. 50, no. 8, pp.
  12. –1854, Aug. 2002.
  13. Y. D. Huang and M. Barkat, “Near-field multiple
  14. source localization by passive sensor array,” IEEE
  15. Trans. Antennas and Propagat., vol. 39, no. 7, pp. 968–
  16. , 1991.
  17. J. Liang and D. Liu, “Passive localization of mixed
  18. near-field and far field sources using two-stage music
  19. algorithm,” IEEE Trans. Signal Process., vol. 58, no.
  20. , pp. 108–120, Jan. 2010.
  21. E. Grosicki, K. Abed-Meraim, and Y. Hua, “A
  22. weighted linear prediction method for near-field
  23. source localization,” IEEE Trans. Signal
  24. Process., vol. 53, no. 10, pp. 3651–3660, 2005.
  25. N. Yuen and B. Friedlander, “Performance analysis of
  26. higher order ESPRIT for localization of near-field
  27. sources,” IEEE Trans. Signal
  28. Process., vol. 46, pp. 709–719, 1998.
  29. J. Jiang, F. Duan, J. Chen, Y. Li, and X. Hua, “Mixed
  30. Near-Field and Far-Field Sources Localization Using
  31. the Uniform Linear Sensor Array,” IEEE Sensors J.,
  32. vol. 13, no. 8, 2013.
  33. J. Liang and D. Liu, “Passive localization of near-field
  34. sources using cumulant,” IEEE Sensors J., vol. 9, no.
  35. , pp. 953–960, Aug. 2009.
  36. W. Zhi and M. Y.-W. Chia, “Near-field source
  37. localization via symmetric subarrays,” IEEE Signal
  38. Process. Lett., vol. 14, no. 4, pp. 409–412, Jun. 2007.
  39. G.Liu, and X. Sun, “Two-Stage Matrix Differencing
  40. Algorithm for Mixed Far-Field and Near-Field
  41. Sources Classification and Localization,” IEEE
  42. Sensors J., vol. 14, no. 6, 2014.
  43. A. B. Gershman, C. F. Mecklenbrauker, and J. F.
  44. Bohme, "Matrix fitting approach to direction of arrival estimation with imperfect spatial coherence of
  45. wavefronts," IEEE Trans. Signal Process., vol. 45, no.
  46. , pp. 1894-1899, 1997.
  47. J. Ringelstein, A. B. Gershman, and J. F. Bohme,
  48. "Direction finding in random inhomogeneous media in
  49. the presence of multiplicative noise," IEEE Signal
  50. Process. Lett., IEEE, vol. 7, no. 10, pp. 269-272, 2000.
  51. B. G. Song and J. A. Ritcey, "Angle of arrival
  52. estimation of plane waves propagating in random
  53. media," J. Acoust. Soc. Amer., vol. 99, no. 3, pp.
  54. -1379, 1996.
  55. S. Shahbazpanahi , S. Valaee and A. B. Gershman, "A
  56. covariance fitting approach to parametric localization
  57. of multiple incoherently distributed sources", IEEE
  58. Trans. Signal Process., vol. 52, no. 3, pp. 592-600,
  59.  
  60. L. A. Chernov, Wave propagation in a random
  61. medium. New York, USA: McGraw-Hill, 1960.
  62. A. Paulraj and T. Kailath, “Direction of arrival
  63. estimation by eigenstructure methods with imperfect
  64. spatial coherence of wavefronts,” J. Acoust. Soc.
  65. Amer., vol. 83, pp. 1034–1040, Mar. 1988.
  66. E. Grosicki, K. Abed-Meraim, and Y. Hua, "A
  67. weighted linear prediction method for near-field
  68. source localization," IEEE Trans. SignalProcess., vol.
  69. , pp. 3651–3660, Oct. 2005.