شبیه‌ساز سریع دادۀ خام اهداف متحرک در تصویربرداری نواری با رادار دهانه مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید چمران

چکیده

دسترسی به یک مولد سریع و دقیق دادۀ خام اهداف متحرک در تصویربرداری با رادار دهانه مصنوعی، به‌ویژه در کاربردهای مربوط به آشکارسازی هدف متحرک زمینی، از اهمیت زیادی برخوردار است. در این مقاله، از ترکیب حوزۀ زمان و فرکانس، یک الگوریتم سریع برای تولید دادۀ خام اهداف متحرک در تصویربرداری نواری با این رادار، ارائه شده است. با استفاده از این شبیه‌ساز، در شرایط مختلف از نظر سرعت، شتاب و جهت حرکت هدف، دادۀ خام رادار تولید شده و با بهره‌گیری از الگوریتم بُرد-داپلر، تصویر نهایی آن استخراج شده است. سپس، تصاویر به‌دست آمده، با بهره-گیری از روابط استخراج شده برای پیش‌بینی اثر پارامترهای حرکت هدف بر تصاویر رادار، مورد مطالعه قرار گرفته است. نتایج به‌دست آمده نشان می‌دهد که شبیه‌ساز پیشنهادی، از لحاظ سرعت و دقت، نسبت به سایر شبیه‌سازهای موجود از عملکرد بهتری برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

A Fast Strip-Mode Synthetic Aperture Radar Raw Data Simulator of Moving Targets

نویسندگان [English]

  • Meysam Mohammadi
  • Alimorad Mahmoudi
چکیده [English]

A fast and accurate synthetic aperture radar raw data generator of moving targets has high
importance, especially in the applications of the ground moving target indication. In this paper,
by the hybrid time-frequency domain, a fast algorithm has been proposed for strip mode SAR
raw data generation of moving targets. Using this simulator, in different conditions in terms of
target motion speed, acceleration and direction, radar raw data has been generated and its final
image has been extracted by Range-Doppler Algorithm. Then, the obtained images have been
studied using the formula that have been extracted for predicting the effects of target motion
parameters in the SAR images. The results show that the proposed simulator has a better
performance in terms of speed than other existing simulators.

کلیدواژه‌ها [English]

  • Raw Data
  • Synthetic aperture Radar
  • Strip-Mode Imaging
  • Moving Targets
  • Range-Doppler Algorithm
  1. Y. K. Chan and V. C. Koo, “An Introduction to Synthetic
  2. Aperture Radar (SAR),” Progress In Electromagnetics
  3. Research B, vol. 2, pp. 27-60, 2008.
  4. O. Dogan and M. Kartal, “Efficient Strip-Mode SAR Raw-
  5. Data Simulation of Fixed and Moving Targets,” IEEE
  6. Geoscience and Remote Sensing Letters, vol. 8, no. 5, pp.
  7. -888, 2011.
  8. S. H. Lim, J. H. Han, S. Y. Kim, and N. H. Myung, “Azimuth
  9. Beam Pattern Synthesis for Airborne SAR System
  10. Optimization,” Progress In Electromagnetics Research, vol.
  11. , pp. 295-309, 2010.
  12. Q. Liu, W. Hong, W. X. Tan, Y. Lin, Y. Wang, and Y. Wu,
  13. “An Improved Polar Format Algorithm with Performance
  14. Analysis for Geosynchronous Circular SAR 2D Imaging,”
  15. Progress In Electromagnetics Research, vol. 119, pp. 155-
  16. , 2011.
  17. S. J. Wei, X. L. Zhang, and J. Shi, “Linear Array SAR
  18. Imaging via Compressed Sensing,” Progress In
  19. Electromagnetics Research, vol. 117, p. 299-319, 2011.
  20. J. W. Winkler, “An Investigation into Ground Moving Target
  21. Indication (GMTI) Using a Single-Channel Synthetic
  22. Aperture Radar (Master's Thesis),” Brigham Young
  23. University, 2013.
  24. I. C. Sikaneta, “Detection of Ground Moving Objects with
  25. Synthetic Aperture Radar (Ph.D. Thesis),” Ottawa: Univ.
  26. Ottawa, 2002.
  27. E. Chapin and C. W. Chen, “Along-Track Interferometry for
  28. Ground Moving Target Indication,” IEEE Aerosp. Electron.
  29. Syst. Mag., vol. 23, no. 6, pp. 19-24, 2008.
  30. D. C. Maori, J. Klare, A. R. Brenner, and J. H. G. Ender,
  31. “Wide-Area Traffic Monitoring with the SAR/GMTI System
  32. PAMIR,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 10,
  33. pp. 3019–3030, 2008.
  34. Entzminger, J. N., “JointSTARS and GMTI: Past, Present
  35. and Future,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no.
  36. , p. 748–761, 1999.
  37. C. Livingstone and A. Thompson, “The Moving Object
  38. Detection,” Can. J. Remote Sens., vol. 30, no. 3, pp.
  39. –368, 2004.
  40. C. Romero, “High Resolution Simulation of Synthetic
  41. Aperture Radar Imaging, California: Polytechnic State
  42. University, San Luis Obispo, 2010.
  43. L. Yang, W. D. Yu, Y. H. Luo, and S. C. Zheng, “Efficient
  44. Strip-Mode SAR Raw Data Simulator of Extended Scenes
  45. Included Moving Targets,” Progress In Electromagnetics
  46. Research B, vol. 53, pp. 187-203, 2013.
  47. Y. Q. Jin, “Polarimetric Scattering Modeling and
  48. Informationre-Trieval of SAR Remote Sensing-A Seview of
  49. FDU Work,” Progress In Electromagnetics Research, vol.
  50. , pp. 333-384, 2010.
  51. Y. L. Chang, C. Y. Chiang, and K. S. Chen, “SAR Image
  52. Simulation with Application to Target Recognition,”
  53. Progress In Electromagnetics Research, vol. 119, pp. 35-57,
  54.  
  55. H. Buddendick and T. F. Eibert, “Bistatic Image Formation
  56. from Shooting and Bouncing Rays Simulated Current
  57. Distributions,” Progress In Electromagnetics Research, vol.
  58. , pp. 1-18, 2011.
  59. M. Zhang, Y. W. Zhao, H. Chen, and W. Q. Jiang, “SAR
  60. Imaging Simulation for Composite Model of Ship on
  61. Dynamic Ocean Scene,” Progress In Electromagnetics
  62. Research, vol. 113, pp. 395-412, 2011.
  63. M. Alessandro and D. V. Francesca, “A Time-Domain Raw
  64. Signal Simulator for Interferometric SAR,” IEEE Trans. on
  65. Geosci. Remote Sens., vol. 42, no. 9, pp. 1811-1817, 2004.
  66. Y. Wang, Z. M. Zhang, and Y. K. Deng, “Squint Spotlight
  67. SAR Raw Signal Simulation in the Frequency Domain Using
  68. Optical Principles,” IEEE Trans. on Geosci. Remote Sens.,
  69. vol. 46, no. 8, pp. 2208-2215, 2008.
  70. X. Qiu, D. Hu, L. Zhou, and C. Ding, “A Bistatic SAR Raw
  71. Data Simulator Based on Inverse w-k Algorithm,” IEEE
  72. Trans. on Geosci. Remote Sens., vol. 48, no. 3, pp.
  73. -1547, 2010.
  74. G. Franceschetti, R. Guida, A. Iodice, D. Riccio, and G.
  75. Ruello, “Efficient Simulation of Hybrid Stripmap/Spotlight
  76. SAR Raw Signals from Extended Scenes,” IEEE Trans. on
  77. Geosci. Remote Sens., vol. 42, no. 11, pp. 2385-2396, 2004.
  78. A. S. Khwaja, L. Ferro-Famil, and E. Pottier, “SAR Raw
  79. Data Generation Using Inverse SAR Image Formation
  80. Algorithms,” in Proc. Int. Geosci. Remote Sens. Symp.,
  81.  
  82. G. Franceschetti, A. Iodice, S. Perna, D. Riccio, “Efficient
  83. Simulation of Airborne SAR Raw Data of Extended Scenes,”
  84. IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2851-
  85. , 2006.
  86. S. V. Baumgartner and G. Krieger, “Chapter 18 Multi-
  87. Channel SAR for Ground Moving Target Indication,”
  88. Academic Press Library in Signal Processing, vol. 2, pp. 911-
  89. , 2014.
  90. A. Adewoye, “Synthetic Aperture Radar Simulation for Point
  91. and Extended Targets (Master's Thesis),” Ontario: McMaster
  92. University, 2013.
  93. I. G. Cumming and F. H. Wong, “Digital Processing of
  94. Synthetic Aperture Radar Data: Algorithms and
  95. Implementations,” Norwood: Artech House, 2005.