ساختاری با پیچیدگی کم برای تشخیص جهت ورود سیگنال‌های همدوس منابع نامشخص در زوایای کناری آنتن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 شهید رجائی

2 تربیت دبیر شهید رجائی

چکیده

در تخمین جهت ورود سیگنال های همدوس، شیروانی مقدم و کشاورزنسب روشی مبتنی بر آرایه خطی یکنواخت پیشنهاد دادند که ابتدا تعداد منابع ناهمدوس را تعیین کرده و سپس جهت ورود سیگنال های همدوس را تخمین میزند. زمانی که سیگنال ها در زوایای کناری آنتن دریافت می شوند، آرایه خطی یکنواخت در تشخیص منابع کارایی مناسبی ندارد. هدف اصلی این مقاله، ارائه روشی جدید با استفاده از الگوریتم JADE-MUSIC مبتنی بر مقدار آستانه است که شامل دو قسمت است. شبیه سازی ها نشان می دهند که این روش جدید، در تخمین جهت ورود سیگنال های باند باریک نسبت به آرایه های خطی یکنواخت و صلیبی کارایی بالاتری دارد ضمنا بار محاسباتی کمتری نسبت به این ساختارها داراست.

کلیدواژه‌ها


عنوان مقاله [English]

A Low-Complexity Setup for DOA Estimation of Coherent Signals of Unknown Sources Located at Endfire Angles

نویسندگان [English]

  • Shahryar Shirvani Moqaddam 1
  • Akbar Keshavarz nasab 2
1
2
چکیده [English]

Estimating direction of arrival (DOA) is more complicated when unknown non-coherent sources
contain coherent signals or when sources are coherent. Recently, a new method based on
uniform linear array (ULA) has been proposed that first determines the number of non-coherent
sources and then estimates the DOA of coherent signals in each group. ULA is more applicable
for DOA estimation but for estimating DOAs close to the array endfire, this configuration does
not perform well or signals may be missed. Cross array (CA) is a suggestion to solve this
problem but it offers a lower performance for middle angles and introduces more computational
complexity. As the main goal of this investigation, using the proposed threshold-based JADEMUSIC algorithm, a new method is proposed which divides angles in two parts. For the angles which are in the range of [−60°, 60°], horizontal elements of CA and for endfire angles and the angles which are in the range of [−90°, −60°] and [60°, 90°], vertical elements of CA are considered. Simulation results demonstrate that the new proposed scenario offers a higher
performance for DOA estimation of narrowband signals with respect to ULA and CA
configurations. Also, its computational load is the same as the case that uses ULA. 

کلیدواژه‌ها [English]

  • ULA
  • CA
  • DOA estimation
  • EGM
  • FBSS
  • JADE-MUSIC algorithm
  1. S. Shirvani Moghaddam and S. Almasi Monfared, “A
  2. Comprehensive Performance Study of Narrowband DOA
  3. Estimation Algorithms,” International Journal on
  4. Communications, Antenna and Propagation (IRECAP), vol.
  5. , no. 4, pp. 396-405, August 2011.
  6. S. Shirvani Moghaddam and F.Akbari, “Efficient
  7. Narrowband Direction of Arrival Estimation Based on a
  8. Combination of Uniform Linear / Shirvani-Akbari Arrays,”
  9. International Journal of Antennas and Propagation (IJAP),
  10. Hindawi, September 2012.
  11. J. Foutz, A. Spanias, and M. K. Banavar, “Narrow band
  12. Direction of Arrival Estimation for Antenna Arrays,”
  13. Morgan & Claypool Publishing: Canada, 2008.
  14. L. C. Godara, “Handbook of Antennas in Wireless
  15. Communications,” CRC Press: Boca Rato Florida, 2002.
  16. E. Tuncer and B. Friedlander, “Classical and Modern
  17. Direction-Of-Arrival Estimation,” Academic Press:
  18. NewYork, 2009.
  19. S. Zhenfei, S. Donglin, and X. Shunguo, “Detecting| the
  20. Number of EMI Sources Based on Higher Order Statistics,”
  21. In Proc. of the 20th International Zurich Symposium on
  22. Electromagnetic Compatibility, pp. 465-468, January 2009.
  23. H. Akaike, “A New Look at the Statistical Model
  24. Identification,” IEEE Transactions on Automatic Control,
  25. vol. AC-19, no. 6, pp. 716-723, December 1974.
  26. J. Rissanen, “Modeling by Shortest Data Description,”
  27. Automatica, vol. 14, pp. 465-471, 1978.
  28. M. Wax and I. Ziskind, “Detection of the Number of
  29. Coherent Signals by the MDL Principle,” IEEE
  30. Transactions on Acoustics, Speech and Signal Processing,
  31. vol. 37, no. 8, pp. 1190-1196, August 1989.
  32. E. J. Hannan, “The Determination of the Order of an
  33. Autoregression,” Journal of the Royal Statistical Society,Series B (Methodological), vol. 41, no. 2, pp. 190-195,
  34.  
  35. C. R. Rao and Y. WU, “A Strongly Consistent Procedure
  36. for Model Selection in a Regression Problem,” Biometrika,
  37. vol. 76, pp. 369-374, 1989.
  38. M. Wax and T. Kailath, “Detection of Signals by
  39. Information Theoretic Criteria,” IEEE Transactions on
  40. Acoustics, Speech and Signal Processing, vol. ASSP-33, no.
  41. , pp. 387-392, February 1985.
  42. Q. T. Zhang, “Statistical Analysis of the Performance
  43. Information Theoretic Criteria in the Detection of the
  44. Number of Signals in Amy Processing,” IEEE Transactions
  45. on Acoustics, Speech and Signal Processing, vol. ASSP-37,
  46. no. 10, pp. 1557- 1567, October 1989.
  47. P. Stoica and A. Nehorai, “Music, Maximum Likelihood
  48. and Cramer-Rao Bound: Further Results and Comparisons,”
  49. In Proc. of the International Conference on Acoustics,
  50. Speech and Signal Processing (ICASSP), vol. 4, pp.
  51. -2608, 1989.
  52. M. Wax, “Detection and Localization of Multiple Sources
  53. via the Stochastic Signals Model,” IEEE Transactions on
  54. Signal Processing, vol. 39, no. 1, pp. 2450-2456, November
  55.  
  56. P. M. Djuric, “A Model Selection Rule for Sinusoids in
  57. White Gaussian Noise,” IEEE Transactions on Signal
  58. Processing, vol. 44, no. 7, pp. 1744-1751, July 1996.
  59. E. Fishler and H. Messer, “On the Use of Order Statistics
  60. for Improved Detection of Signals by the MDL Criterion,”
  61. IEEE Transactions on Signal Processing, vol. 48, no. 8, pp.
  62. -2247, August 2000.
  63. L. Huang, T. Long, E. Mao, and H. C. So, “MMSE-Based
  64. MDL Method for Accurate Source Number Estimation,”
  65. IEEE Signal Processing Letters, vol. 16, no. 9, pp. 798-801,
  66. September 2009.
  67. L. Huang, T. Long, and E. Mao, “Robust Estimation of the
  68. Number of Sources Using an MMSE-Based MDL Method,”
  69. In Proc. of the IET International Radar Conference, pp. 1-4,
  70.  
  71. F.Chu, J. Huang, M. Jiang, Q. Zhang, and T. Ma “Detecting
  72. the Number of Sources Using Modified EIT,” In Proc. of
  73. the 4th IEEE Conference on Industrial Engineering and
  74. Applications (ICIEA), pp. 563-566, 2009.
  75. J. F. Cardoso, S. Bose, B. Friedlander, “On the Optimal
  76. Source Separation Based on Second and Fourth Order
  77. Cumulants,” In Proc. of the 8th IEEE Signal Processing
  78. Workshop on General Topics for Engineers, 1996.
  79. S. Shirvani Moghaddam, Z. Ebadi, and V. Tabataba Vakili, ,
  80. “A Novel DOA Estimation Approach for Unknown
  81. Coherent Source Groups with Coherent Signals,” Iranian
  82. Journal of Electrical and Electronic Engineering, vol. 11, no.
  83. , pp. 8-16, 2015.
  84. Zhang, Y.F., Ye, Z.F., “Efficient Method of DOA
  85. Estimation for Uncorrelated and Coherent Signals”, IEEE
  86. Antennas and Wireless Propagation Letters, Vol. 7, No. 1,
  87. pp. 799-802, 2008.
  88. E. Gonen, J. B. M.C., and M. Dogan, “Applications of
  89. Cumulants to Array Processing: Part IV: Direction Finding
  90. in Coherent Signals Case,” IEEE Transactions on Signal
  91. Procesing, vol. 45, no. 9, pp. 2265-2276, September 1997.
  92. S. Shirvani Moghaddam and A. Keshavarz Nasab, “A
  93. Threshold-based Jade-Music Algorithm for DOA
  94. Estimation of Unknown Signal Groups,” Journal of
  95. Electrical and Control Engineering (JECE), vol. 3, no. 6, pp.
  96. -22, Nov. /Dec. 2013.
  97. Q. Zhang, Y. Yin, and J. Huang, “Detecting the Number of
  98. Sources Using Modified EGM,” In Proc. of the IEEE
  99. Region 10 Conference (TENCON), pp. 1-4, 2006.
  100. F. J. Theis and Y. Inouye, “On The Use of Joint
  101. Diagonalization in Blind Signal Processing,” In Proc. of the
  102. IEEE International Symposium on Circuits and Systems,
  103.  
  104. S. U. Pillai and B. H. Kwon, “Forward/Backward Spatial
  105. Smoothing Techniques for Coherent Signal Identification,”
  106. IEEE Transaction on Acoustics, Speech and Signal
  107. Processing, vol. 37, no. 1, January 1989.
  108. S. Shirvani Moghaddam and S. Jalaei, “Determining the
  109. Number of Coherent/Correlated Sources Using FBSS-based
  110. Methods,” Frontiers in Science, vol. 2, no. 6, pp. 203-208,
  111. December 2012.
  112. S. Shirvani Moghaddam, F. Akbari, and V. Tabataba Vakili,
  113. “A Novel Array Geometry to Improve DOA Estimation of
  114. Narrowband Sources at the Angles Close to the Array
  115. Endfire,” In Proc. of the 19th Iranian Conference on
  116. Electrical Engineering (ICEE2011), Tehran, Iran, pp. 1-6,
  117. May 2011.
  118. S. Shirvani Moghaddam and F. Akbari, “A Novel ULABased
  119. Geometry for Improving AOA Estimation,”
  120. EURASIP Journal of Advances on Signal Processing, vol.
  121. (Article Id: 39), pp. 1-9, 2011.