[1] C. Li, W. Chen, G. Liu, R. Yan, H. Xu, and Y. Qi, “A noncontact FMCW radar sensor for displacement measurement in structural health monitoring,” Sensors, vol. 15, pp. 7412–7433, 2015.
https://doi.org/10.3390/s150407412
[2] P. Eshghy, M. Kazerooni, “Extracting the amount of subsidence of subway tunnels from InSAR,” J. RADAR, vol. 10, no. 1, 2022. (In Persian).
DOR: https://dor.isc.ac/dor/20.1001.1.23454024.1401.10.1.12.1.
[3] S. Rödelsperger, G. Läufer, C. Gerstenecker, and M. Becker, “Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L,” J. Appl. Geod., vol. 4, pp. 41–54, 2010.
https://doi.org/10.1515/jag.2010.005
[4] H. Rudolf, D. Leva, D. Tarchi, and A. Sieber, “A mobile and versatile sar system,”IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 1, pp. 592–594, 1999.
https://doi.org/10.1109/IGARSS.1999.773575
[5] A. Aguasca, A. Broquetas, J. J. Mallorquí, and X. Fabregas, “A solid state L to x-band flexible ground-based SAR system for continuous monitoring applications,”IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 2, pp. 757–760, 2004.
https://doi.org/10.1109/IGARSS.2004.1368512
[6] S. Rödelsperger and A. Meta, “Metasensing’s fastgbsar: ground based radar for deformation monitoring,” Proc. SPIE 9243, SAR Image Analysis, Modeling, and Techniques XIV, pp. 355–362, SPIE, 2014.
https://doi.org/10.1117/12.2067243
[7] D. Tarchi, F. Oliveri, and P. F. Sammartino, “MIMO radar and ground-based sar imaging systems: Equivalent approaches for remote sensing,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 425–435, 2012.
https://doi.org/10.1109/TGRS.2012.2199120
[8] M. bayat, M. moradi, “The Presentation of an Algorithm for Interference Detection in the Synthetic Aperture Radar," J. RADAR, vol. 9, no. 1, pp.107-117 , 2021 (In Persian).
DOR: https://dor.isc.ac/dor/20.1001.1.23454024.1400.9.1.11.3.
[9] A.Tavakkoli Estahbanati, M.Dehghani, “Evaluation of the proposed methods for phase recovery in conventional radar interferometric method," J. RADAR, vol. 5, no. 3, pp.1-14, 2018 (In Persian).
[10] A. Ferretti, C. Prati, and F. Rocca, “Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry,” IEEE Trans. Geosci. Remote Sens, vol. 38, no. 5, pp. 2202–2212, 2000.
https://doi.org/10.1109/36.868878
[11] C. Huang, H. Xia, and J. Hu, “Surface deformation monitoring in coal mine area based on PSI.,” IEEE Access, vol. 7, pp. 29672-29678, 2019.
https://doi.org/10.1109/ACCESS.2019.2900258
[12] M. A. Richards, J. Scheer, W. A. Holm, and W. L. Melvin, “Principles of modern radar,” Scitech Publishing, 2010.
ISBN: 9781891121524
[13] A. M. H. Ansar, A. H. M. Din, A. S. A. Latip and M. N. M. Reba, “a Short Review on Persistent Scatterer Interferometry Techniques for Surface Deformation Monitoring. The International Archives of the Photogrammetry,” Remote Sensing and Spatial Information Sciences, pp. 23-31, 2022.
https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-23-2022
[14] L. Iannini and A. M. Guarnieri, “Atmospheric phase screen in ground-based radar: Statistics and compensation,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 537–541, 2010.
https://doi.org/10.1109/LGRS.2010.2090647
[15] H. Jia and L. Liu, “A technical review on persistent scatterer interferometry,” J. Mod. Transport., vol. 24, no. 2, pp. 153–158, 2016.
https://doi.org/10.1007/s40534-016-0108-4
[16] A. Ferretti, C. Prati, and F. Rocca. “Permanent scatterers in SAR interferometry,” IEEE Trans. Geosci. Remote Sens., vol.39, pp. 8–20, 2001.
https://doi.org/10.1109/36.898661
[17] A. A. Rahimifard, M. Zoofaghari, T. Gholipour, S. S. Shams, H. Safdarkhani, “Azimuth Resolution Enhancement of Real Aperture Radar Using the Accelerated Sparse-TSVD algorithm and Calibrated Radiation Pattern for Discrete and Distributed Targets," accepted for publication in J. RADAR, (In Persian).
[18] I. G. Cumming and F. H. Wong, “Digital processing of synthetic aperture radar data,” Artech house, 2005.
ISBN: 1580530583
[19] X. Tuo, Y. Zhang, Y. Huang, and J. Yang, “A fast sparse azimuth super-resolution imaging method of real aperture radar based on iterative reweighted least squares with linear sketching,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2928–2941, 2021.
https://doi.org/10.1109/JSTARS.2021.3061430
[20] R. Gundersen, R. Norland, and C. Rolstad Denby, “Geometric, environmental and hardware error sources of a ground-based interferometric real-aperture FMCW radar system,” Remote Sens., vol. 10, no. 12, p. 2070, 2018.
https://doi.org/10.3390/rs10122070
[21] G. Luzi, M. Pieraccini, D. Mecatti, L. Noferini, G. Macaluso, A. Galgaro, and C. Atzeni, “Advances in ground-based microwave interferometry for landslide survey: a case study,” Int. J. Remote Sens., vol. 27, no. 12, pp. 2331–2350, 2006.
https://doi.org/10.1080/01431160600554975
[22] L. Noferini, M. Pieraccini, G. Luzi, D. Mecatti, G. Macaluso and C. Atzeni, “Ground-based radar interferometry for monitoring unstable slopes,” Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 4088–4091, 2006.
https://doi.org/10.1109/IGARSS.2006.1048
[23] A. Di Pasquale, G. Nico, A. Pitullo, and G. Prezioso, “Monitoring strategies of earth dams by ground-based radar interferometry: How to extract useful information for seismic risk assessment,” Sensors, vol. 18, no. 1, p. 244, 2018.
https://doi.org/10.3390/s18010244
[24] L. Iannini and A. M. Guarnieri, “Atmospheric phase screen in ground-based radar: Statistics and compensation,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 537–541, 2010.
https://doi.org/10.1109/LGRS.2010.2090647
[25] D. Lühr. Sierra, M. Adams, “Radar Noise Reduction Based on Binary Integration”,IEEE Sensors Journal vol. 15, no. 2, pp.766-777, 2015.
https://doi.org/10.1109/JSEN.2014.2352295
[26] G. Wang, J.-M. Munoz-Ferreras, C. Gu, C. Li, and R. Gomez- Garcia, “Application of linear-frequency-modulated continuouswave (LFMCW) radars for tracking of vital signs,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 6, pp. 1387–1399, 2014.
https://doi.org/10.1109/TMTT.2014.2320464
[27] M. M. Abdul-Atty, A. S. I. Amar, and M. Mabrouk. “C-band FMCW radar design and implementation for breathing rate estimation,” Adv. Sci. Technol. Eng. Syst. J., vol. 4, pp.1299–1307, 2020.
http://dx.doi.org/10.25046/aj0505156
[28] B. A. Atayants, V. M. Davydochkin, V. V. Ezerskiy, V. S Parshin, and S. M. Smolskiy, “Precision FMCW shortrange radar
for industrial applications,” Artech House, 2014.
ISBN: 9781608077397
[29] H. Cruz, M. Véstias, J. Monteiro, H. Neto, and R. P. Duarte, “A review of synthetic-aperture radar image formation algorithms and implementations: a computational perspective,” Remote Sens., vol. 14, no. 5, pp. 1258, 2022.
https://doi.org/10.3390/rs14051258
[30] M. M. Ashry, A. S. Mashaly, and B. I. Sheta, “Comparative analysis between SAR pulse compression techniques,” 12th Int. Conf. on Elect. Eng. (ICEENG), pp. 234–240. 2020.
https://doi.org/10.1109/ICEENG45378.2020.9171747
[31] I. Tutore, “Airborne synthetic aperture radar,” Ph.D. Thesis, 2004-2005.
http://www.fedoa.unina.it/672/01/PERNA_TESI.pdf
[32] Y. Yang, Y. Pi and R. Li, “Back projection algorithm for spotlight bistatic SAR imaging,” CIE Int. Conf. on Radar, pp. 1–4, 2006.
https://doi.org/10.1109/ICR.2006.343581
[33] Z. Chen, Z. Zeng, D. Fu,Y. Huang,Q. Li,X. Zhang and J. Wan, “Back-Projection Imaging for Synthetic Aperture Radar with Topography Occlusion,” Remote Sens., vol. 15, no. 3, p. 726, 2023.
https://doi.org/10.3390/rs15030726
[34] F. Falabella, A. Perrone, T. A. Stabile, and A. Pepe, “Atmospheric phase screen compensation on wrapped ground-based SAR interferograms,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–15, 2022.
https://doi.org/10.1109/TGRS.2021.3055648
[35] S. Long, A. Tong, Y. Yuan, Z. Li, W. Wu, and C. Zhu, “New approaches to processing ground-based SAR (gbsar) data for deformation monitoring,” Remote Sens., vol. 10, no. 12, p. 1936, 2018.
https://doi.org/10.3390/rs10121936