ارزیابی جابه‌جایی‌های کوچک در تصاویر تداخل‌سنجی SAR مبتنی بر تعیین نقاط پایدار با استفاده از معیار همدوسی و پاشندگی دامنه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد،دانشگاه یزد، یزد، ایران

2 استادیار، دانشگاه یزد، یزد، ایران

3 دکتری، دانشگاه یزد، یزد، ایران

4 دانشجوی دکتری، دانشگاه یزد، یزد، ایران

5 دانشیار، دانشگاه یزد، یزد، ایران

6 استادیار،دانشگاه یزد، یزد، ایران

چکیده

تشخیص جابه‌جایی نقاط با استفاده از رادار در پایش پایداری پدیده­های طبیعی مثل دامنه کوه و پدیده­های مصنوعی مانند سدها و دیواره معادن روباز، برای جلوگیری از ضررهای مادی و انسانی اهمیت زیادی دارد. برای تشخیص جابه‌جایی لازم است نقاطی از هدف با پایداری زیاد و جابه‌جایی بسیار کم به‌عنوان نقاط معیار انتخاب شوند. تشخیص نقاط پایدار با استفاده از معیار‌های همدوسی و پاشندگی دامنه بر روی تصاویر راداری بدست آمده، انجام می‌شود. ازاین‌رو روش تشکیل تصاویر می‌تواند در تعیین نقاط پایدار تأثیرگذار باشد. در این مقاله تأثیر دو روش تصویربرداری بُرد-داپلر (RDA) و تصویرسازی معکوس (BPA) در یک رادار دهانه مصنوعی برای تعیین نقاط پایدار با معیارهای مختلف مقایسه شده و نتایج عملی برای یک سایت راداری شامل اهداف گسسته نشان داده شده است. با درنظرگرفتن معیار همدوسی برای تعیین نقاط پایدار با سطح آستانه 9/0، میانگین جابه‌جایی نقاط پایدار بدست آمده از روش تصویربرداری بُرد-داپلر mm18/0 و با روش تصویرسازی معکوس حدود mm09/0 بدست آمده است. این موضوع نشان می‌دهد که روش تصویرسازی معکوس در تشخیص نقاط پایدار با معیار همدوسی بهتر عمل کرده است. از طرف دیگر، با معیار پاشندگی دامنه در تعیین نقاط پایدار، میانگین جابه‌جایی نقاط پایدار حدود mm015/0 و mm040/0 به ترتیب برای روش‌های بُرد-داپلر و تصویرسازی معکوس بدست آمده است. نتایج بدست آمده از این تحقیق می‌تواند در انتخاب روش تصویربرداری مناسب در رادار دهانه مصنوعی برای تعیین جابه‌جایی‌های میلی‌متری اهداف مؤثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Small Displacements in SAR Interferometric Images Based on Stable Point Detection Using Coherence and Amplitude Dispersion Criteria

نویسندگان [English]

  • Parisa Yazdani, 1
  • , Ali Moftakharzadeh 2
  • Tayebeh Gholipour 3
  • Sepideh Sadat Shams 1
  • Aliakbar Rahimifard 4
  • Hamid Saeedi Sourak, 5
  • Hadi Safdarkhani 6
  • Mohammad Zolfaghari 5
1 Master's student, Yazd University, Yazd, Iran
2 Assistant Professor, Yazd University, Yazd, Iran
3 Ph.D., Yazd University, Yazd, Iran
4 PhD student, Yazd University, Yazd, Iran
5 Associate Professor, Yazd University, Yazd, Iran
6 Assistant Professor, Yazd University, Yazd, Iran
چکیده [English]

Detecting displacement using radar is crucial for monitoring the stability of natural phenomena, such as mountain slopes, and artificial structures, like dams and open-pit mine walls, to prevent financial and human risks. Identifying highly stable reference points with minimal displacement is crucial for accurate displacement detection. This identification relies on coherence and amplitude dispersion criteria applied to radar images, making the image formation method a key factor in determining stable points.
This paper compares the effectiveness of two Synthetic Aperture Radar (SAR) imaging methods—the Range-Doppler Algorithm (RDA) and the Back Projection Algorithm (BPA)—in identifying stable points based on various criteria. Practical results are presented for a radar site containing discrete targets. Using a coherence threshold of 0.9, the RDA method yielded an average stable point displacement of 0.18 mm, whereas the BPA method achieved approximately 0.09 mm, indicating superior performance of the BPA method in detecting stable points via the coherence criterion. On the other hand, using the amplitude dispersion criterion to identify stable points, the average displacement of stable points was about 0.015 mm and 0.040 mm for the RDA and BPA methods, respectively.
The results of this research can be effective in selecting the appropriate imaging method in Synthetic Aperture Radar for determining millimeter-scale displacements of targets.

کلیدواژه‌ها [English]

  • Synthetic Aperture Radar
  • Range Doppler Algorithm
  • Back Projection Algorithm
  • Stable Point
  • Coherency
  • Amplitude Dispersion

Smiley face

 

[1] C. Li, W. Chen, G. Liu, R. Yan, H. Xu, and Y. Qi, “A noncontact FMCW radar sensor for displacement measurement in structural health monitoring,” Sensors, vol. 15, pp. 7412–7433, 2015.
https://doi.org/10.3390/s150407412
[2] P. Eshghy, M. Kazerooni, “Extracting the amount of subsidence of subway tunnels from InSAR,” J. RADAR, vol. 10, no. 1, 2022. (In Persian).
DOR: https://dor.isc.ac/dor/20.1001.1.23454024.1401.10.1.12.1.
[3] S. Rödelsperger, G. Läufer, C. Gerstenecker, and M. Becker, “Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L,” J. Appl. Geod., vol. 4, pp. 41–54, 2010.
https://doi.org/10.1515/jag.2010.005
[4] H. Rudolf, D. Leva, D. Tarchi, and A. Sieber, “A mobile and versatile sar system,”IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 1, pp. 592–594, 1999.
https://doi.org/10.1109/IGARSS.1999.773575
[5] A. Aguasca, A. Broquetas, J. J. Mallorquí, and X. Fabregas, “A solid state L to x-band flexible ground-based SAR system for continuous monitoring applications,”IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), vol. 2, pp. 757–760, 2004.
https://doi.org/10.1109/IGARSS.2004.1368512
[6] S. Rödelsperger and A. Meta, “Metasensing’s fastgbsar: ground based radar for deformation monitoring,” Proc. SPIE 9243, SAR Image Analysis, Modeling, and Techniques XIV, pp. 355–362, SPIE, 2014.
https://doi.org/10.1117/12.2067243
[7] D. Tarchi, F. Oliveri, and P. F. Sammartino, “MIMO radar and ground-based sar imaging systems: Equivalent approaches for remote sensing,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 425–435, 2012.
https://doi.org/10.1109/TGRS.2012.2199120
[8] M. bayat, M. moradi, “The Presentation of an Algorithm for Interference Detection in the Synthetic Aperture Radar," J. RADAR, vol. 9, no. 1, pp.107-117 , 2021 (In Persian).
DOR: https://dor.isc.ac/dor/20.1001.1.23454024.1400.9.1.11.3.
[9] A.Tavakkoli Estahbanati, M.Dehghani, “Evaluation of the proposed methods for phase recovery in conventional radar interferometric method," J. RADAR, vol. 5, no. 3, pp.1-14, 2018 (In Persian).
[10] A. Ferretti, C. Prati, and F. Rocca, “Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry,” IEEE Trans. Geosci. Remote Sens, vol. 38, no. 5, pp. 2202–2212, 2000.
https://doi.org/10.1109/36.868878
[11] C. Huang, H. Xia, and J. Hu, “Surface deformation monitoring in coal mine area based on PSI.,” IEEE Access, vol. 7, pp. 29672-29678, 2019.
https://doi.org/10.1109/ACCESS.2019.2900258
[12] M. A. Richards, J. Scheer, W. A. Holm, and W. L. Melvin, “Principles of modern radar,” Scitech Publishing, 2010.
ISBN: 9781891121524
[13] A. M. H. Ansar, A. H. M. Din, A. S. A. Latip and M. N. M. Reba, “a Short Review on Persistent Scatterer Interferometry Techniques for Surface Deformation Monitoring. The International Archives of the Photogrammetry,” Remote Sensing and Spatial Information Sciences, pp. 23-31, 2022.
https://doi.org/10.5194/isprs-archives-XLVI-4-W3-2021-23-2022
[14] L. Iannini and A. M. Guarnieri, “Atmospheric phase screen in ground-based radar: Statistics and compensation,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 537–541, 2010.
https://doi.org/10.1109/LGRS.2010.2090647
[15] H. Jia and L. Liu, “A technical review on persistent scatterer interferometry,” J. Mod. Transport., vol. 24, no. 2, pp. 153–158, 2016.
https://doi.org/10.1007/s40534-016-0108-4
[16] A. Ferretti, C. Prati, and F. Rocca. “Permanent scatterers in SAR interferometry,” IEEE Trans. Geosci. Remote Sens., vol.39, pp. 8–20, 2001.
https://doi.org/10.1109/36.898661
[17] A. A. Rahimifard, M. Zoofaghari, T. Gholipour, S. S. Shams, H. Safdarkhani, “Azimuth Resolution Enhancement of Real Aperture Radar Using the Accelerated Sparse-TSVD algorithm and Calibrated Radiation Pattern for Discrete and Distributed Targets," accepted for publication in J. RADAR, (In Persian).
[18] I. G. Cumming and F. H. Wong, “Digital processing of synthetic aperture radar data,” Artech house, 2005.
ISBN: 1580530583
[19] X. Tuo, Y. Zhang, Y. Huang, and J. Yang, “A fast sparse azimuth super-resolution imaging method of real aperture radar based on iterative reweighted least squares with linear sketching,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2928–2941, 2021.
https://doi.org/10.1109/JSTARS.2021.3061430
[20] R. Gundersen, R. Norland, and C. Rolstad Denby, “Geometric, environmental and hardware error sources of a ground-based interferometric real-aperture FMCW radar system,” Remote Sens., vol. 10, no. 12, p. 2070, 2018.
https://doi.org/10.3390/rs10122070
[21] G. Luzi, M. Pieraccini, D. Mecatti, L. Noferini, G. Macaluso, A. Galgaro, and C. Atzeni, “Advances in ground-based microwave interferometry for landslide survey: a case study,” Int. J. Remote Sens., vol. 27, no. 12, pp. 2331–2350, 2006.
https://doi.org/10.1080/01431160600554975
[22] L. Noferini, M. Pieraccini, G. Luzi, D. Mecatti, G. Macaluso and C. Atzeni, “Ground-based radar interferometry for monitoring unstable slopes,” Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 4088–4091, 2006.
https://doi.org/10.1109/IGARSS.2006.1048
[23] A. Di Pasquale, G. Nico, A. Pitullo, and G. Prezioso, “Monitoring strategies of earth dams by ground-based radar interferometry: How to extract useful information for seismic risk assessment,” Sensors, vol. 18, no. 1, p. 244, 2018.
https://doi.org/10.3390/s18010244
[24] L. Iannini and A. M. Guarnieri, “Atmospheric phase screen in ground-based radar: Statistics and compensation,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 537–541, 2010.
https://doi.org/10.1109/LGRS.2010.2090647
[25] D. Lühr. Sierra, M. Adams, “Radar Noise Reduction Based on Binary Integration”,IEEE Sensors Journal vol. 15, no. 2, pp.766-777, 2015.
https://doi.org/10.1109/JSEN.2014.2352295
[26] G. Wang, J.-M. Munoz-Ferreras, C. Gu, C. Li, and R. Gomez- Garcia, “Application of linear-frequency-modulated continuouswave (LFMCW) radars for tracking of vital signs,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 6, pp.  1387–1399, 2014.
https://doi.org/10.1109/TMTT.2014.2320464
[27] M. M. Abdul-Atty, A. S. I. Amar, and M. Mabrouk. “C-band FMCW radar design and implementation for breathing rate estimation,” Adv. Sci. Technol. Eng. Syst. J., vol. 4, pp.1299–1307, 2020.
http://dx.doi.org/10.25046/aj0505156
[28] B. A. Atayants, V. M. Davydochkin, V. V. Ezerskiy, V. S Parshin, and S. M. Smolskiy, “Precision FMCW shortrange radar
 
for industrial applications,” Artech  House, 2014.
ISBN: 9781608077397
[29] H. Cruz, M. Véstias, J. Monteiro, H. Neto, and R. P. Duarte, “A review of synthetic-aperture radar image formation algorithms and implementations: a computational perspective,” Remote Sens., vol. 14, no. 5, pp. 1258, 2022.
https://doi.org/10.3390/rs14051258
[30] M. M. Ashry, A. S. Mashaly, and B. I. Sheta, “Comparative analysis between SAR pulse compression techniques,” 12th Int. Conf. on Elect. Eng. (ICEENG), pp. 234–240. 2020.
https://doi.org/10.1109/ICEENG45378.2020.9171747
[31] I. Tutore, “Airborne synthetic aperture radar,” Ph.D. Thesis, 2004-2005.
http://www.fedoa.unina.it/672/01/PERNA_TESI.pdf
[32] Y. Yang, Y. Pi and R. Li, “Back projection algorithm for spotlight bistatic SAR imaging,” CIE Int. Conf. on Radar, pp. 1–4, 2006.
https://doi.org/10.1109/ICR.2006.343581
[33] Z. Chen, Z. Zeng, D. Fu,Y. Huang,Q. Li,X. Zhang and J. Wan, “Back-Projection Imaging for Synthetic Aperture Radar with Topography Occlusion,” Remote Sens., vol. 15, no. 3, p. 726, 2023.
https://doi.org/10.3390/rs15030726
[34] F. Falabella, A. Perrone, T. A. Stabile, and A. Pepe, “Atmospheric phase screen compensation on wrapped ground-based SAR interferograms,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–15, 2022.
https://doi.org/10.1109/TGRS.2021.3055648
[35] S. Long, A. Tong, Y. Yuan, Z. Li, W. Wu, and C. Zhu, “New approaches to processing ground-based SAR (gbsar) data for deformation monitoring,” Remote Sens., vol. 10, no. 12, p. 1936, 2018.
https://doi.org/10.3390/rs10121936
دوره 11، شماره 2
شماره پیاپی 30، پاییز وزمستان
بهمن 1402
  • تاریخ دریافت: 26 مهر 1402
  • تاریخ بازنگری: 13 آذر 1402
  • تاریخ پذیرش: 21 دی 1402
  • تاریخ انتشار: 01 بهمن 1402