[1] M. Darvishnezhad, M. A. Sebt, “Feature Selection Method Based on Mutual Information for Polarimetric Synthetic Aperture Radar (PolSAR) Image Classification, Scientific Journal of RADAR, vol. 10, February 2022. (In Pension)
[2] M. Migliaccio and A. Gambardella, “Microwave radiometer spatial resolution enhancement”, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 5, pp. 1159–1169, May 2005.
[3] Y. Zha, Y. Zhang, Y. Huang, and J. Yang, “Bayesian angular super-resolution algorithm for real-aperture imaging in forward-looking radar”, Information, vol. 6, no. 4, pp. 650–668, Oct. 2015.
[4] Y. Zhang, Y. Huang, Y. Zha, and J. Yang, “Super-resolution imaging for forward-looking scanning radar with generalized Gaussian constraint,” Prog. Electromagn. Res., vol. 46, pp. 1–10, Jan. 2016.
[5] Y. Zhang, A. Jakobsson, D. Mao, Y. Zhang, Y. Huang, and J. Yang, “Generalized time-updating sparse covariance-based spectral estimation,” IEEE Access, vol. 7, pp. 143876 143887, 2019.
[6] Y. Zhang, A. Jakobsson, Y. Zhang, Y. Huang, and J. Yang, “Wideband sparse reconstruction for scanning radar,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6055–6068, Oct. 2018.
[7] Y. Zhang, D. Mao, Q. Zhang, Y. Zhang, Y. Huang, and J. Yang, “Airborne forward looking radar super-resolution imaging using iterative adaptive approach,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 7, pp. 2044–2054, Jul. 2019.
[8] F. Lenti, F. Nunziata, M. Migliaccio, and G. Rodriguez, “Two dimensional TSVD to enhance the spatial resolution of radiometer data,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2450–2458, May 2014.
[9] J. D. Shea, B. D. Van Veen, and S. C. Hagness, “A TSVD analysis of microwave inverse scattering for breast imaging,” IEEE Trans. Biomed. Eng., vol. 59, no. 4, pp. 936–945, Apr. 2012.
[10] X. Tuo, Y. Zhang, D. Mao, Y. Kang, and Y. Huang, “A radar forward looking super resolution method based on singular value weighted truncation,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2019, pp. 9180–9183.
[11] P.-A. Barriere, J. Idier, Y. Goussard, and J.-J. Laurin, “Fast solutions of the 2D inverse scattering problem based on a TSVD approximation of the internal field for the forward model,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 4015–4024, Dec. 2010.
[12] A. Gambardella and M. Migliaccio, “On the super-resolution of microwave scanning radiometer measurements,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 796–800, Oct. 2008.
[13] M. T. Alonso, P. López-Dekker, and J. J. Mallorquí, “A novel strategy for radar imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 12, pp. 4285–4295, Dec. 2010.
[14] R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in Proc. IEEE Radar Conf., Apr. 2007, pp. 128–133.
[15] Q. Zhang, Y. Zhang, Y. Huang, Y. Zhang, W. Li, and J. Yang, “Sparse with fast MM super-resolution algorithm for radar forward-looking imaging,” IEEE Access, vol. 7, pp. 105247–105257, 2019.
[16] Y. Wu, Y. Zhang, D. Mao, Y. Huang, and J. Yang, “Sparse super-resolution method based on truncated singular value decomposition strategy for radar forward-looking imaging,” J. Appl. Remote Sens., vol. 12, no. 3, 2018, Art. no. 03502.
[17] P. Rodriguez and B. Wohlberg, “An iteratively reweighted norm algorithm for total variation regularization”, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, pp. 892–896.
[18] X. Tuo, Y. Zhang, Y. Zhang, Y. Huang and J. Yang, "Accelerated l1-svd Deconvolution Approach for Real Aperture Radar Super-resolution Imaging," 2022 IEEE Radar Conference (RadarConf22), New York City, NY, USA, 2022, pp. 1-6.
[19] A. Gambardella and M. Migliaccio, “On the super-resolution of microwave scanning radiometer measurements,” IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 4, pp. 796–800, 2008.
[20] Y. Zhang, X. Tuo, Y. Huang, and J. Yang, “A tv forward looking super-resolution imaging method based on TSVD strategy for scanning radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 7, pp. 4517–4528, 2020.