افزایش وضوح تصاویر رادار دهانه‌ی حقیقی در راستای سمت با استفاده از الگوریتم sparse-TSVD تسریع‌شده و پترن تشعشعی کالیبره‌شده برای اهداف گسسته و پیوسته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا ، دانشگاه یزد ،یزد ،ایران

2 استادیار، دانشگاه یزد ،یزد ،ایران

3 دکتری ، دانشگاه یزد ،یزد ،ایران

4 کارشناسی ارشد ، دانشگاه یزد ،یزد ،ایران

چکیده

تصویربرداری راداری عوارض زمین به دلیل سازگاری بالا با ملاحظات زیست‌محیطی و شرایط آب‌وهوایی همواره برای کاربردهای نقشه‌برداری و آمایش سرزمین موردتوجه قرار گرفته است. رادارهای دهانه‌ی حقیقی با پویش چرخشی به دلیل ناحیه‌ی پوشش زیاد، سادگی تجهیزات و قابلیت حمل مناسب می‌توانند گزینه‌ی مطلوبی برای تصویربرداری راداری محسوب شوند. بااین‌وجود، پهنای بیم نسبتاً وسیع آنتن به‌کاررفته در این رادارها برای رسیدن به قدرت تفکیک بالا مناسب نیست. گسترش الگوریتم‌های پردازشی برای رسیدن به تصاویر با قدرت تفکیک بالا بر پایه‌ی حل معادله ماتریسی وابسته به الگوی آنتن موضوع اصلی تحقیقات در این حوزه را در سال‌های اخیر به خود اختصاص داده است. جابه‌جاشدن مرکز فاز آنتن در زمان چرخش می‌تواند عملکرد این روش‌ها را با چالش مواجه کند. برای رفع این چالش، استفاده از الگوی مختلط به‌جای الگوی استاندارد دامنه که بر اساس موج برگشتی از یک هدف نقطه‌ای در ناحیه‌ی تست به‌دست می‌آید در این مقاله پیشنهاد شده است. نتایج به‌دست‌آمده از داده‌های دریافتی از یک رادار پیاده‌سازی شده در باند X نشان می‌دهد که روش پیشنهادی می‌تواند به‌صورت سرانگشتی تا میزان شش برابر قدرت تفکیک رادار دهانه‌ی حقیقی در راستای سمت را افزایش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Azimuth Resolution Enhancement of Real Aperture Radar Using the Accelerated Sparse-TSVD algorithm and Calibrated Radiation Pattern for Discrete and Distributed Targets

نویسندگان [English]

  • Aliakbar Rahimifard 1
  • Mohammad Zolfaghari 2
  • Tayebeh Gholipour 3
  • , Sepideh Sadat Shams 4
  • Hadi Safdarkhani 2
1 PhD student, Yazd University, Yazd, Iran
2 Assistant Professor, Yazd University, Yazd, Iran
3 Ph.D., Yazd University, Yazd, Iran
4 Master's degree, Yazd University, Yazd, Iran
چکیده [English]

Due to its high compatibility with environment and weather conditions, radar imaging of terrains has always been considered for mapping and land surveying applications. Real aperture radar with rotary scanning can be a favorable option for radar imaging due to its large coverage area, simplicity, and portability. However, the wide beamwidth of the antenna used in these radars is not suitable for achieving high azimuth resolution demonstrating the necessity of using super-resolution algorithms. Moving the antenna phase center during rotation degrades the performance of these methods. To resolve this problem, the use of complex pattern based on the reflected wave from a point target in the investigation domain is proposed in this paper. The results obtained from the data acquired from an X-band radar show that the proposed method can increase the azimuth resolution of the real aperture radar by around six times as a rule of thumb.

کلیدواژه‌ها [English]

  • Real aperture radar (RAR)
  • Azimuth resolution
  • Radar imaging
  • Calibrated radiation pattern
  • Azimuth scanning

p>Smiley face

[1]   M. Darvishnezhad, M. A. Sebt, “Feature Selection Method Based on Mutual Information for Polarimetric Synthetic Aperture Radar (PolSAR) Image Classification, Scientific Journal of RADAR, vol. 10, February 2022. (In Pension)
[2]  M. Migliaccio and A. Gambardella, “Microwave radiometer spatial resolution enhancement”, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 5, pp. 1159–1169, May 2005.
[3]  Y. Zha, Y. Zhang, Y. Huang, and J. Yang, “Bayesian angular super-resolution algorithm for real-aperture imaging in forward-looking radar”, Information, vol. 6, no. 4, pp. 650–668, Oct. 2015.
[4]  Y. Zhang, Y. Huang, Y. Zha, and J. Yang, “Super-resolution imaging for forward-looking scanning radar with generalized Gaussian constraint,” Prog. Electromagn. Res., vol. 46, pp. 1–10, Jan. 2016.
[5]  Y. Zhang, A. Jakobsson, D. Mao, Y. Zhang, Y. Huang, and J. Yang, “Generalized time-updating sparse covariance-based spectral estimation,” IEEE Access, vol. 7, pp. 143876 143887, 2019.
[6]  Y. Zhang, A. Jakobsson, Y. Zhang, Y. Huang, and J. Yang, “Wideband sparse reconstruction for scanning radar,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6055–6068, Oct. 2018.
[7]  Y. Zhang, D. Mao, Q. Zhang, Y. Zhang, Y. Huang, and J. Yang, “Airborne forward looking radar super-resolution imaging using iterative adaptive approach,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 7, pp. 2044–2054, Jul. 2019.
[8]  F. Lenti, F. Nunziata, M. Migliaccio, and G. Rodriguez, “Two dimensional TSVD to enhance the spatial resolution of radiometer data,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2450–2458, May 2014.
[9]  J. D. Shea, B. D. Van Veen, and S. C. Hagness, “A TSVD analysis of microwave inverse scattering for breast imaging,” IEEE Trans. Biomed. Eng., vol. 59, no. 4, pp. 936–945, Apr. 2012.
[10]         X. Tuo, Y. Zhang, D. Mao, Y. Kang, and Y. Huang, “A radar forward looking super resolution method based on singular value weighted truncation,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2019, pp. 9180–9183.
[11]         P.-A. Barriere, J. Idier, Y. Goussard, and J.-J. Laurin, “Fast solutions of the 2D inverse scattering problem based on a TSVD approximation of the internal field for the forward model,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 4015–4024, Dec. 2010.
[12]         A. Gambardella and M. Migliaccio, “On the super-resolution of microwave scanning radiometer measurements,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 4, pp. 796–800, Oct. 2008.
[13]         M. T. Alonso, P. López-Dekker, and J. J. Mallorquí, “A novel strategy for radar imaging based on compressive sensing,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 12, pp. 4285–4295, Dec. 2010.
[14]         R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in Proc. IEEE Radar Conf., Apr. 2007, pp. 128–133.
[15]         Q. Zhang, Y. Zhang, Y. Huang, Y. Zhang, W. Li, and J. Yang, “Sparse with fast MM super-resolution algorithm for radar forward-looking imaging,” IEEE Access, vol. 7, pp. 105247–105257, 2019.
[16]         Y. Wu, Y. Zhang, D. Mao, Y. Huang, and J. Yang, “Sparse super-resolution method based on truncated singular value decomposition strategy for radar forward-looking imaging,” J. Appl. Remote Sens., vol. 12, no. 3, 2018, Art. no. 03502.
[17]         P. Rodriguez and B. Wohlberg, “An iteratively reweighted norm algorithm for total variation regularization”, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, pp. 892–896.
[18]         X. Tuo, Y. Zhang, Y. Zhang, Y. Huang and J. Yang, "Accelerated l1-svd Deconvolution Approach for Real Aperture Radar Super-resolution Imaging," 2022 IEEE Radar Conference (RadarConf22), New York City, NY, USA, 2022, pp. 1-6.
[19]         A. Gambardella and M. Migliaccio, “On the super-resolution of microwave scanning radiometer measurements,” IEEE Geoscience and Remote Sensing Letters, vol. 5, no. 4, pp. 796–800, 2008.
[20]         Y. Zhang, X. Tuo, Y. Huang, and J. Yang, “A tv forward looking super-resolution imaging method based on TSVD strategy for scanning radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 7, pp. 4517–4528, 2020.
 
دوره 11، شماره 1
شماره پیاپی 29، فصلنامه بهار و تابستان
شهریور 1402
  • تاریخ دریافت: 21 خرداد 1402
  • تاریخ بازنگری: 20 تیر 1402
  • تاریخ پذیرش: 08 مرداد 1402
  • تاریخ انتشار: 01 شهریور 1402