طراحی آنتن مونوپالس باند Ku در فناوری موجبر شکاف هوایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مخابررات و الکترونیک-دانشکده برق و کامپیوتر- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

2 گروه مخابرات و الکترونیک- دانشکده برق و کامپیوتر - دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

چکیده

در این مقاله یک آنتن مونوپالس یک بعدی در فناوری موجبر شکاف هوایی شیاری (GGW) ارائه می­شود. برای دستیابی به عملکرد مناسب جمع و تفاضل مقایسه کننده مونوپالس، یک کوپلر ریبلت به‌همراه خط تأخیر ۹۰ درجه طراحی شده است. خروجی­های هیبرید ۱۸۰ درجه طراحی شده به‌منظور تغذیه عناصر تشعشعی به تقسیم کننده توان ۱ به ۴ متصل می­شوند. یک آرایه ۸×۱ اسلات به‌عنوان بخش تشعشعی آنتن پیشنهادی طراحی می­شود. آنتن نمونه برای کاربرد در باند Ku طراحی و شبیه‌سازی شده است. نتایج شبیه­سازی نشان­دهنده افت بازگشتی بیش از dB ۱۰ در فرکانس مرکزی ۱۴ گیگاهرتز و عملکرد مناسب تفاضل و مجموع است.

کلیدواژه‌ها


عنوان مقاله [English]

Design of Ku Band Monopulse Antenna in Gap Waveguide Technology

نویسنده [English]

  • Seyed Ali Razavi Parizi 2
1
2 Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

In this paper we present a one-dimensional monopulse antenna in groove gap waveguide (GGW) technology. A riblet coupler with a 90 degree delay line is designed to achieve proper sum and difference performances of the monopulse comparator. The outputs of designed 180 degree hybrid are connected to 4 way power dividers in order to feed the radiating elements. A 1×8 array of slots is used as the radiating section of the proposed antenna. A sample antenna is designed and simulated for operation at Ku band. Simulation results show that the return loss is more than 10 dB around 14GHz center frequency and the proper sum and difference performances.

کلیدواژه‌ها [English]

  • Gap Waveguide
  • Monopulse
  • Riblet
  • Divider
  • Slot
  • Array
[1]   S. M. Sherman and D. K. Barton, “Monopulse principles and techniques, Artech House,” 2011.##
[2]    Z. Lu, Y. Li, M. Gao,  “Direction estimation for two steady targets in monopulse radar”, Journal of Systems Engineering and Electronics, vol. 26, no. 1, pp. 61 – 68, 2015.##
[3]   K. F. Nieman, K. A. Perrine , T. L. Henderson, K. H. Lent,T. J. Brudner, B. L. Evans, “Wideband monopulse spatial filtering for large receiver arrays for reverberant underwater communication channels,” OCEANS  MTS/IEEE SEATTLE,  2010.##
[4]  D. I. Zulch, H. P. Taylor, G. B. Jones, “An Application of Radiometric Techniques to Precision Angle Tracking Radar Systems,” IEEE Transactions on Aerospace and Electronic Systems, AES-6, no. 5, pp. 663 – 671, 1970.##
[6]   R. R. Kinsey, “An edge-slotted waveguide array with dual-plane monopulse,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 3, pp. 474 – 481, 1999.##
[7] Javad Aliasgari, Zahra Atlasbaf, “A Novel Compact Monopulse Parallel-Plate Slot Array Antenna,”  IEEE Antennas and Wireless Propagation Letters,  vol. 15, pp. 762 – 765, 2016.##
[8]   C. Kumar, V. Senthil Kumar , V. V. Srinivasan, “Design Aspects of a Compact Dual Band Feed Using Dielectric Rod Antennas With Multiple element monopulse Tracking,” IEEE Transactions on Antennas and Propagation, vol. 61. no. 1, pp. 4926 – 4932, 2013.##
[9]  Yanxun Wang , Wenbin Dou, Bo Bi, “W band axially displaced monopulse dual-reflector antenna for inter-satellite communications,” IET Microwaves, Antennas & Propagation, vol.  10, no. 7, pp. 742 – 747, 2016.##
[10] H. Wang, D. G. Fang, and X. Chen, “A compact single layer monopulse microstrip antenna array,” IEEE Transactions on antennas and propagation, vol. 54, no. 2, pp. 503–509, 2006.##
[11] Mehran Atamanesh, Bijan Abbasi Arand , Amir Zahedi, “Wideband microstrip  antenna array with simultaneously low sidelobe level in both sum and difference patterns,” IET Microwaves, Antennas & Propagation, vol. 2, no. 5, pp. 820 – 825, 2018.##
[12] Hemant Kumar, Girish Kumar, “Broadband monopulse microstrip antenna array for X-band monopulse tracking,” IET Microwaves, Antennas & Propagation, vol. 12, no. 13, pp. 2109 – 2114, 2018.##
[13] Minggang Liu and Zhenghe Feng, “A Novel Hybrid Planar SIW Magic Tee and Monopulse Antenna,” Microwave and optical technology letter, vol. 52, no. 3, pp. 686-689, 2010.##
[14] Y. J. Cheng, W. Hong, and K. Wu, “94 GHz substrate integrated monopulse antenna array,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp. 121–129, 2012.##
 [15] Feifei Cao, Deqiang Yang, Jin Pan, Dongdong Geng, Hua Xiao, “A Compact Single-Layer Substrate-Integrated Waveguide (SIW) Monopulse Slot Antenna Array,” IEEE Antennas and Wireless Propagation Letters,  vol. 16,          pp. 2755 – 2758, 2017.##
 [16] Jianfeng  Zhu, Shaowei Liao, Shufang Li, Quan Xue, “60 GHz Substrate-Integrated Waveguide-Based Monopulse Slot Antenna Arrays,” IEEE Transactions on Antennas and Propagation,   vol. 66, no. 9, pp. 4860 – 4865, 2018.##
[17]  H. Wang, D. G. Fang, B. Zhang and W. Q. Chen, “Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas,” IEEE Trans. Antennas Prppat., vol. 58, no. 3, pp. 640-647, Mar 2010.##
[18]   Guan-Long Huang, Shi-Gang Zhou, Tan-Huat Chio, “Highly-Efficient Self-Compact Monopulse Antenna System with Integrated Comparator Network for RF Industrial Applications,” IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 674–681, 2017.##
[19] P.-S. Kildal, E. Alfonso, A. Valero-Nogueira and E. Rajo-Iglesias, “Local metamaterial-based waveguides in gaps between parallel ‎metal plates,” IEEE Antennas and Wireless Propagation Letter, vol. 8, pp. 84-87, 2009.##
[20] P.-S. Kildal, “Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves,” 3rd European ‎Conference on Antennas and Propagation EUCAP, 2009.‎##
[21] E. Rajo-Iglesias, A. U. Zaman, and P. S. Kildal, “Parallel plate cavity mode suppression in microstrip circuit packages using a lid of ‎nails,” IEEE Mic. Wireless Comp. Letter, vol. 20, no. 1, pp. 31–33, 2010.##
[22]  S. A. Razavi, P.-S. Kildal, L. Xiang, E. Alfonso Alos, and H. Chen, “2 × 2-slot element for 60-GHz planar array antenna realized on two doubled-sided pcbs using SIW cavity and EBG-type soft surface fed by microstrip-ridge gap waveguide,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4564–4573,  2014.##
[23] M. S. Sorkherizi, A. Khaleghi, and P.-S. Kildal, “Direct-coupled cavity filter in ridge gap waveguide,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 3, pp. 490–495, 2014.##
[25]  A. Vosoogh, A. Haddadi, A. U. Zaman, J. Yang, H. Zirath and A. A. Kishk, “W-Band Low-Profile Monopulse Slot Array Antenna Based on Gap Waveguide Corporate-Feed Network,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 6997-7009, 2018.##
[26]  E. Rajo, P-S. Kildal, “Numerical Studies of Bandwidth of Parallel Plate Cut-Off Realized by a Bed of Nails, Corrugations and Mushroom-Type Electromagnetic Bandgap for Use in Gap Waveguides,” IET Microw Antennas Propag, vol. 5, no. 3, pp. 282-289, 2011.##
[27]   H. J. Riblet, “The short slot hybrid junction,” Proceedings of IRE, vol. 40, pp. 180-184, 1952.##
[28] A. Karimi Nobandegani, S. E. Hosseini, “Design and Simulation of a Ku-Band Array Antenna Feed Network Based on Novel Ridge-Gap Waveguide Technology,” Journal of Radar, vol. 6, no. 1, 2019 (In Persian).##