[1] Reddy, A. V., & Borkar, V. G. (2020). Design and Simulation of Microstrip Branch Line Coupler and Monopulse Comparator for Airborne Radar Applications. In Advances in Decision Sciences, Image Processing, Security and Computer Vision (pp. 10-18). Springer, Cham.##
[2] Gallagher, K., Hedden, A., & Ranney, K. (2019, May). Issues associated with radar applications on software defined radios. In Radar Sensor Technology XXIII (Vol. 11003, p. 110031I). International Society for Optics and Photonics.##
[3] Elfrgani, A., & Reddy, C. J. (2019, March). Near-Field RCS for Automotive Radar Applications. In 2019 International Workshop on Antenna Technology (iWAT) (pp. 217-220). IEEE.##
[4] Luong, D., & Balaji, B. (2019, May). Radar applications of quantum squeezing. In Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII (Vol. 11018, p. 110181C). International Society for Optics and Photonics. ##
[5] Schneider, D. A., Rösch, M., Tessmann, A., & Zwick, T. (2019). A Low-Loss W-Band Frequency-Scanning Antenna for Wideband Multichannel Radar Applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 806-810.##
[6] Bell, M. R., & Grubbs, R. A. (1993). JEM modeling and measurement for radar target identification. IEEE Transactions on Aerospace and Electronic Systems, 29(1), 73-87. ##
[7] Martin, J., & Mulgrew, B. (1990, May). Analysis of the theoretical radar return signal form aircraft propeller blades. In IEEE International Conference on Radar (pp. 569-572). IEEE. ##
[8] Cilliers, A., & Nel, W. A. J. (2008, September). Helicopter parameter extraction using joint time-frequency and tomographic techniques. In 2008 International Conference on Radar (pp. 598-603). IEEE. ##
[9] Lim, H., & Myung, N. H. (2011). High resolution range profile-jet engine modulation analysis of aircraft models. Journal of Electromagnetic Waves and Applications, 25(8-9), 1092-1102. ##
[10] Lee, J. H., & Kim, H. T. (2005). Radar target discrimination using transient response reconstruction. Journal of Electromagnetic Waves and Applications, 19(5), 655-669.##
[11] Berni, A. J. (1975). Target identification by natural resonance estimation. IEEE Transactions on Aerospace and Electronic systems, (2), 147-154.##
[12] Chuang, C. W., & Moffatt, D. L. (1976). Natural resonances of radar targets via Prony's method and target discrimination. IEEE Transactions on Aerospace and Electronic Systems, (5), 583-589.##
[13] Aldhubaib, F., & Shuley, N. V. (2010). Radar target recognition based on modified characteristic polarization states. IEEE Transactions on Aerospace and Electronic Systems, 46(4), 1921-1933.##
[14] Copeland, J. R. (1960). Radar target classification by polarization properties. Proceedings of the IRE, 48(7), 1290-1296.##
[15] Xuesong, W., Shunping, X., Huamin, T., & Zhaowen, Z. (1997). Polarization radar target recognition based on curve fitting under the least square criterion using improved simulated annealing algorithm.##
[16] Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning. Neural and Statistical Classification, 13.##
[17] Watt, J., Borhani, R., & Katsaggelos, A. (2020). Machine learning refined: foundations, algorithms, and applications. Cambridge University Press.##
[18] Buskirk, T. D. (2020). MACHINE LEARNING FOR SURVEY DATA. Presented at RTI International.##
[19] Wang, P., Li, Y., & Reddy, C. K. (2019). Machine learning for survival analysis: A survey. ACM Computing Surveys (CSUR), 51(6), 110.##
[20] Mane, D. T., & Kulkarni, U. V. (2020). A survey on supervised convolutional neural network and its major applications. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 1058-1071). IGI Global. ##
[21] Feng, B., Chen, B., & Liu, H. (2017). Radar HRRP target recognition with deep networks. Pattern Recognition, 61, 379-393.##
[22] Karine, A., Toumi, A., Khenchaf, A., & El Hassouni, M. (2017). Target recognition in radar images using weighted statistical dictionary-based sparse representation. IEEE Geoscience and Remote Sensing Letters, 14(12), 2403-2407.##
[23] Karine, A., Toumi, A., Khenchaf, A., & El Hassouni, M. (2018). Radar Target Recognition Using Salient Keypoint Descriptors and Multitask Sparse Representation. Remote Sensing, 10(6), 843##
[24] Yan, Y. (2018). Convolutional neural networks based on augmented training samples for synthetic aperture radar target recognition. Journal of Electronic Imaging, 27(2), 023024.##
[25] Paulson, C., Wilson, J., & Lewis, T. (2018, April). Synthetic aperture radar quantized grayscale reference automatic target recognition algorithm. In Algorithms for Synthetic Aperture Radar Imagery XXV (Vol. 10647, p. 106470P). International Society for Optics and Photonics.##
[26] Liu, S., & Yang, J. (2018). Target recognition in synthetic aperture radar images via joint multifeature decision fusion. Journal of Applied Remote Sensing, 12(1), 016012.##
[27] Guo, C., He, Y., Wang, H., Jian, T., & Sun, S. (2019). Radar HRRP target recognition based on deep one-dimensional residual-inception network. IEEE Access, 7, 9191-9204.##
[28] Long, T., Liang, Z., & Liu, Q. (2019). Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition. Science China Information Sciences, 62(4), 40301.##
[29] Qi, B., Jing, H., Chen, H., Zhuang, Y., Yue, Z., & Wang, C. (2019). Target recognition in synthetic aperture radar image based on PCANet. The Journal of Engineering, 2019(21), 7309-7312.##
[30] Farlow, S. J. (1981). The GMDH algorithm of Ivakhnenko. The American Statistician, 35(4), 210-215.##
[31] Guo, C., He, Y., Wang, H., Jian, T., & Sun, S. (2019). Radar HRRP target recognition based on deep one-dimensional residual-inception network. IEEE Access, 7, 9191-9204.##