تحلیل دقت ناوبری تلفیقی INS/GNSS در مسیر مستقیم و با سرعت ثابت برای کاربرد رادار دهانه مصنوعی هواپایه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشگاه فضایی ایران، پژوهشکده مکانیک شیراز، ایران

2 دانشجوی دکتری، پژوهشگاه فضایی ایران، پژوهشکده مکانیک شیراز، ایران

چکیده

تعیین موقعیت آنتن در سامانه‌های رادار دهانه مصنوعی بسیار حائز اهمیت است و لازم است در طراحی زیرسامانه‌ ناوبری آن، منابع مختلف خطا و نقش آنها در دقت نتایج ناوبری مورد توجه قرار گیرد. با توجه به رفتار خطاهای ناوبری اینرسی و ناوبری ماهواره‌ای، تلفیق داده حسگرهای اینرسی با سامانه‌‌های موقعیت‌یابی ماهواره‌ای، روشی متداول برای دست‌یابی به نتایج ناوبری با دقت بالا است. با این وجود، ملاحظات رادار دهانه مصنوعی استفاده از نتایج ناوبری تلفیقی را در بازه تصویربرداری با مشکل مواجه می‌کند. بنابراین، در بازه تصویربرداری فقط از نتایج ناوبری اینرسی استفاده می‌شود و نتایج ناوبری تلفیقی تنها به عنوان شرایط اولیه برای آن در نظر گرفته می‌شود. تخمین دقت این شرایط اولیه و پیش‌بینی رشد خطای ناوبری اینرسی ناشی از آن، در این مقاله مورد بررسی قرار گرفته است.  با توجه به این‌که فیلتر کالمن توسعه یافته پرکاربردترین ابزار برای تلفیق حسگرهای اینرسی و داده‌های ماهواره است، درایه‌های ماتریس کوواریانس حالت آن بیانگر دقت نتایج ناوبری تلفیقی خواهد بود. در این پژوهش برای سناریوی پروازی رادار دهانه مصنوعی که مسیر نامی آن یک مسیر مستقیم با سرعت ثابت است، ماتریس کوواریانس حالت در شرایط پایا و نیز بعد از قطع شدن داده ماهواره به‌صورت تحلیلی محاسبه و درستی آن به کمک شبیه‌سازی بررسی شده است. به طور مشخص دقت تخمین موقعیت، سرعت و زوایای جهت‌گیری آنتن بر حسب سطح نویز حسگرهای اینرسی و داده‌های ماهواره محاسبه شده است. نتایج به‌دست آمده در این پژوهش می‌تواند در طراحی و یا انتخاب سامانه ناوبری مناسب برای کاربرد رادار دهانه مصنوعی مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Accuracy Analysis of INS/GNSS Integrated Navigation on a Straight Path with Constant Velocity for Airborne Synthetic Aperture Radar Application

نویسندگان [English]

  • Hadi Makarem 1
  • V. Cheraghi Mahmudabadi 2
1 Assistant Professor, Iran Space Research Institute, Shiraz Mechanics Research Institute, Iran
2 PhD student, Iran Space Research Institute, Shiraz Mechanics Research Institute, Iran
چکیده [English]

Antenna positioning is very important in synthetic aperture radar systems and it is necessary in the design of a navigation subsystem to account for different sources of error and their effects on the accuracy of navigation results. According to the error behavior of inertial and satellite navigation systems, integration of inertial sensors with satellite positioning systems is a common method to achieve high accuracy navigation results. However, synthetic aperture radar considerations, lead to some problems in the utilization of integrated navigation results in the imaging period. Therefore, only the inertial navigation results are used in the imaging period, and integrated navigation results are used just as the initial conditions for the algorithm. This paper studies the estimation of these initial conditions and predicts the navigation error growth caused by them. Since the extended Kalman filter is the most common tool for the integration of inertial sensors and satellite data, the elements of the corresponding state covariance matrix represent the accuracy of integrated navigation results. In this study for a synthetic aperture radar flight scenario, in which the nominal path is a straight path with a constant velocity, the state covariance matrix is calculated analytically both in the steady-state conditions and after the GNSS data outage. These analytical results are verified with simulations. Specifically, the estimation accuracy of antenna position, velocity and attitude are calculated with respect to the noise level of inertial sensors and GNSS data. Results can be used in the design and/or selection of a proper navigation system in synthetic aperture radar applications.

کلیدواژه‌ها [English]

  • Inertial Navigation System (INS)
  • Global Navigation Satellite System (GNSS)
  • Synthetic Aperture Radar (SAR)
  • Kalman Filter
  • Covariance Matrix
   [1]      D. H. Titterton, "Strapdown Inertial Navigation Technology: The Institution of Electrical Engineers," 2004.
   [2]      W. Quan, J. Li, X. Gong, and J. Fang, INS/CNS/GNSS Integrated Navigation Technology: Springer Berlin Heidelberg, 2015.
   [3]      N. B. Y. Norouzi, "Navigation Quality Improvement Using Passive Angle of Arrival Measurement," Journal of Radar vol. 5, 2017.
   [4]      J. Li, J. Fang, Z. Lu, and L. Bai, "Airborne Position and Orientation System for Aerial Remote Sensing," International Journal of Aerospace Engineering, vol. 2017, pp. 1-11, 2017.
   [5]      C. Kreye, B. Eissfeller, and G. Ameres, "Architectures of gnss/ins integrations: Theoretical approach and practical tests," Symposium on Gyro Technology, pp. 10-14, 2004.
   [6]      P. D. Groves, "Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems," Artech House, 2008.
   [7]      M. S. Grewal and A. P. Andrews, "Kalman Filtering: Theory and Practice Using MATLAB California State University at Fullerton," Theory and Practice, vol. 5, pp. A223-34, 2001.
   [8]      K.-S. Chen, "Principles of Synthetic Aperture Radar Imaging," A System Simulation Approach: CRC Press, 2016.
   [9]      I. G. C. F. H. Wong, "Digital processing of synthetic aperture radar data," algorithms and implementation: Artech House, 2004.
[10]      S. A. S. S. R. Samareh Hashemi, "Fast Imaging in Ground-Based Circular Strip-Map Synthetic Aperture Radar," Journal of Radar, vol. 3, 2015.
[11]      J. Saeedi and S. M. Alavi, "Improved navigation-based motion compensation for LFMCW synthetic aperture radar imaging," Signal, Image and Video Processing, vol. 10, pp. 405-412, 2016.
[12]      J. W. Song and C. G. Park, "INS/GPS integrated smoothing algorithm for synthetic aperture radar motion compensation using an extended kalman filter with a position damping loop," International Journal of Aeronautical and Space Sciences, vol. 18, pp. 118-128, 2017.
[13]      J. Fang and X. Gong, "Predictive Iterated Kalman Filter for INS/GPS Integration and Its Application to SAR Motion Compensation," IEEE Transactions on Instrumentation and Measurement, vol. 59, pp. 909-915, 2009.
[14]      A. W. Doerry, "Motion measurement for synthetic aperture radar," in Sandia, ed. United States, 2015.
[15]      E. P. Velikanova, A. A. Gel’tser, Z. T. Erdyneev, and N. V. Panokin, "Analysis of the accuracy requirements for the inertial navigation system in synthetic aperture radars," Gyroscopy and Navigation, vol. 95, pp. 47-58, 2017.
[16]      R. E. Ebner and N. K. Datta, "Specification of internal sensor noise to meet SAR motion compensation requirements," in Proceeding of the IEEE 1988 National Aerospace and Electronics Conference, Dyton, OH, USA, 1988.
[17]      S. Buckreuss, "Motion errors in an airborne synthetic aperture radar system," European Transactions on Telecommunications, vol. 2, pp. 655-664, 1991.
[18]      J. L. Farrell, "Strapdown inertial navigation system requirements imposed by synthetic aperture radar," Control and Dynamic Systems, vol. 33, pp. 177-198, 1990.
[19]      B. Ekstrand, "Analytical Steady State Solution for a Kalman Tracking Filter," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-19, 1983.
[20]      F. L. Markley, "Analytic Steady-State Accuracy of a Three-Axis Spacecraft Attitude Estimator," Journal of Guidance, Control, and Dynamics, vol. 40, 2017.
[21]      R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Transactions of the ASME–Journal of Basic Engineering, vol. 82, pp. 34-45, 1960.
[22]      R. E. Kalman, "New Results in Linear Filtering and Prediction Theory," Journal  of Basic  Engineering, 1961.
[23]      M. Salgado, R. Middleton, and G. C. Goodwin, "Connection between continuous and discrete Riccati equations with applications to Kalman filtering," Control Theory and Applications, IEE Proceedings D, 1988.
[24]      S. Hong, M. H. Lee, S. Member, H.-h. Chun, S.-h. Kwon, and J. L. Speyer, "Observability of Error States in GPS/INS Integration," IEEE transactions on Vehicular Technology, vol. 54, pp. 731-743, 2005.
[25]      Analog Devices, "ADIS16488 Tactical Grade Ten Degree of Freedom Inertial Sensor (Rev. C)," 2013.