بهبود مکان‌یابی در رادار MIMO با استفاده از اطلاعات پیشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی برق، دانشگاه پدافند هوایی خاتم الانبیاء (ص)، تهران، ایران

2 دانشکده مهندسی برق- دانشگاه پدافند هوایی خاتم الانبیاء(ص)

3 دانشیار دانشگاه خاتم الانبیا

چکیده

دسته جدیدی از سامانه­­های رادار بنام رادارهای MIMO در دهه گذشته مطرح گردیده­اند. این سامانه­ها مزیت­های بسیاری را از لحاظ آشکارسازی و تخمین پارامترهای اهداف نسبت به سامانه­های قبل به ارمغان آورده­اند. با توجه به محدودیت­هایی که روش­های مکان­یابی مرسوم دارند، جهت استفاده از تمام مزیت­های رادارهای MIMO نیاز به استفاده از روش­های جدید برای پردازش سیگنال است. در این مقاله تخمین DOA برای رادار MIMO با استفاده از روش­های حسگری فشرده بررسی گردیده است. با توجه به این‌که در کاربردهای عملی همچون تخمین DOA اطلاعات پیشین درباره محل اهداف وجود دارد، با استفاده از وزن‌دهی مناسب در روش پیشنهادی (P1,2,w)، بازیابی جهت، دامنه و تفکیک­پذیری اهداف نتایج مطلوب­تری داشته و با تعداد اندازه­گیری کمتر انجام گردیده است. به‌طوری‌که مقدار 23% بهبود نسبت به روش­های رایج مشاهده می­شود. مسئله بازیابی برای دو ماتریس اندازه­گیری بررسی گردیده است و طبق نتایج شبیه‌سازی‌ها با انتخاب ماتریس اندازه‌گیری گوسی می‌توان بازیابی سیگنال را با 8% اندازه‌گیری کمتر نسبت به ماتریس اندازه­گیری واحد ناقص انجام داد.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of Positioning in MIMO Radar Using Prior Information

نویسندگان [English]

  • majid zarie 1
  • java ranjbar 2
  • Farhad Sadeghi Almaloo 2
  • j. khalilpoor 3
1 Electrical Engineering Department, khatam al-anbia(pbuh) University, Tehran, Iran
2 Electrical Engineering Department, khatam al-anbia (pbuh) University
چکیده [English]

A new category of radar systems that have been introduced in the last decade are MIMO radars. These systems have many advantages in terms of detecting and estimating target parameters compared to the previous systems. Due to the limitations of conventional positioning methods, to utilize all the advantages of MIMO radars, it is necessary to use new methods for signal processing. In this paper, the DOA estimation for MIMO radar is investigated using compact sensor methods. Given that in practical DOA estimation applications, there exists a prior information about the location of targets, in the proposed method(P1,2,w) by applying appropriate weighting, retrieving direction, amplitude and resolution of targets is done with smaller number of measurements and has better results. In this case, a 23% improvement over conventional methods is observed. Also, the recovery problem has been investigated for two measuring matrices, and according to the simulation results, the signal can be recovered with 8% less measurements by selecting the Gaussian measurement matrix instead of the partial identity measurement matrix.

کلیدواژه‌ها [English]

  • MIMO Radar
  • Positioning
  • DOA Estimation
  • Compact Sensor
  • Reduced Number of Measurements
 
   [1]      T. Strohmer and H. Wang, “Adventures in Compressive Sensing Based MIMO Radar,” Excursions in Harmonic Analysis, vol. 3, pp. 285-326, 2015.##
   [2]      J. Li and P. Stoica, “MIMO Radar with Colocated Antennas,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 106-114, 2007.##
   [3]      A. Haimovich, R. Blum, and L. Cimini, “MIMO Radar with Widely Separated Antennas,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116-129, 2008.##
   [4]      P. Chung, M. Viberg, and J. Yu, “DOA Estimation Methods and Algorithms,” Academic Press Library in Signal Processing, pp. 599-650, 2014.##
   [5]      J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408-1418, 1969.##
   [6]      R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276-280, 1986.##
   [7]      A. Zoubir, M. Viberg, S. Theodoridis, and R. Chellappa,   “Array and statistical signal processing,” Academic Press, 2013.##
   [8]      Z. Yang, J. Li, P. Stoica, and L. Xie, “Sparse methods for direction-of-arrival estimation,” Academic Press Library in Signal Processing, vol. 7, pp. 509-581, 2018.##
   [9]      E. Candes and T. Tao, “Decoding by Linear Programming,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4203-4215, 2005.##
[10]      Jiadong Shang, Zulin Wang, and Qin Huang, “A Robust Algorithm for Joint Sparse Recovery in Presence of Impulsive Noise,” IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1166-1170, 2015.##
[11]      M. Hyder and K. Mahata, “Direction-of-Arrival Estimation Using a Mixed L2,0 Norm Approximation,” IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4646-4655, 2010.##
[12]      R. Heckel, V. I. Morgenshtern, and M. Soltanolkotabi, “Super-resolution radar,” Information and Inference: A Journal of the IMA, vol. 5, no. 1, pp. 22–75, 2016.##
[13]      R. Heckel, “Super-resolution MIMO radar,” 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, pp. 1416-1420, 2016.##
[14]      I. Bilik et al., “Automotive MIMO radar for urban environments,” 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, pp. 1-6, 2016.##
[15]      T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas, and J. Li, “Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges,” In IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 264-302, 2018.##
[16]      A. Khabbazibasmenj, A. Hassanien, S. A. Vorobyov, and M. W. Morency, “Efficient Transmit Beamspace Design for Search-Free Based DOA Estimation in MIMO Radar,” in IEEE Transactions on Signal Processing, vol. 62, no. 6, pp. 1490-1500, 2014.##
[17]      S. A. Moghaddasi, H. Khaleghi, and M. Fallah, “Beam Pattern Design in Phased MIMO Radars for Known Target Locations,” Journal of Radar, vol. 3, no. 4, pp. 25-32, 2016. (In Persian)##
[18]      Y. Li, S. A. Vorobyov, and A. Hassanien, “MIMO radar capability on powerful jammers suppression,” 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, pp. 5277-5281, 2014.##
[19]      D. Needell, “Weighted L1-minimization for sparse recovery under arbitrary prior information,” Information and Inference: A Journal of the IMA, vol. 6, no. 3, 2017.##
[20]      M. Rossi, A. M. Haimovich, and Y. C. Eldar, “Spatial Compressive Sensing for MIMO Radar,” In IEEE Transactions on Signal Processing, vol. 62, no. 2, pp.   419-430, 2014.##
[21]      R. Heckel and M. Soltanolkotabi, “Generalized Line Spectral Estimation via Convex Optimization,” In IEEE Transactions on Information Theory, vol. 64, no. 6, pp. 4001-4023, 2018.##
[22]      D. L. Donoho, “For most large underdetermined systems of linear equations the minimal 1‐norm solution is also the sparsest solution,”Communications on Pure and Applied Mathematics, vol. 59, no. 6, pp. 797-829, 2006.##
[23]      D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal reconstruction perspective for source localization with sensor arrays,” In IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010-3022, 2005.##