نویززدایی از تصویر رادار روزنه مجازی با استفاده از هموارسازی منطبق و نمایش تنک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مخابرات، دانشکده برق، پردیس فنی و مهندسی، دانشگاه یزد، یزد، ایران

2 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان

چکیده

به دلیل کاربردهای گسترده و نیاز به تشخیص جزئیات صحنه از تصاویر رادار روزنه مجازی، موضوع بهبود کیفیت این تصاویر پس از تشکیل، مورد توجه گسترده قرار گرفته است. با توجه به ماهیت تشکیل تصاویر رادار روزنه مجازی وجود نویز لکه به عنوان مهمترین عامل تخریب کیفیت این تصاویر می­باشد که به‌صورت ضرب­شونده مدل می­شود. در این مقاله روش‌ جدیدی برای حذف نویز لکه ارائه می­شود. استفاده از تخمین­گر MAP با توجه به تابع توزیع نویز و ارائه مساله بهینه­سازی محدب به‌صورت محلی، ایده اصلی این مقاله است که در آنتعدیل‌سازهای هموارسازی منطبق، نمایش تنک و نگاشتدر فضای تصویر به‌کار گرفته می­شود. ارائه مدل بهینه­سازی به‌صورت محلی و استفاده از هموارسازی منطبق امکان حذف مناسب نویز، حفظ لبه­های قوی و جلوگیری از هموارسازی بیش از اندازه تصاویر را فراهم می­سازد. همچنین، استفاده از نمایش تنک باعث حفظ مناسب بافت­های تصویر و نگاشت در فضای تصویر موجب تقویت الگوریتم در مقابل سطوح بالای نویز می­شود. به‌‌منظور حل مساله بهینه­سازی روشی مبتنی بر کمینه­سازی تناوبی معرفی می­شود. نتایج شبیه­سازی، کارایی مناسب روش پیشنهادی در نویززدایی و حفظ جزئیات تصویر و ارائه نتایج بهتر نسبت به تعداد زیادی از روش­های موجود را نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

SAR Image Denoising Using Adaptive Smoothing and Sparse Representation

نویسندگان [English]

  • N. Karimi 1
  • M. R. Taban 2
1 Electrical Department, Yazd Unuversity, Yazd, Iran
2 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Due to extensive SAR applications and the need to recognize SAR image details, the issue of improving the quality of these images after formation has been widely considered. Due to the nature of SAR image formation, the multiplicative speckle noise is considered as the most important factor in the quality degradation of these images. In this paper, a new method for removing speckle noise is presented. The main ideas of this article are using MAP estimator in accordance with the noise distribution function and presentation of a local convex optimization problem along with employment of adaptive smoothing, sparse representation regularizations and projection to the feature space. The local optimization model and adaptive smoothing provide proper noise removal and strong edges preservation and prevent image over smoothing. Also using sparse representation leads to texture preservation, and projection to the feature space enhances the algorithm against high noise levels. In order to solve the optimization problem, a method based on alternating minimization is introduced. The simulation results show good performance of the proposed method in noise reduction and preservation of image details which is better than many existing methods.

کلیدواژه‌ها [English]

  • Synthetic Aperture Radar
  • Denoising
  • Speckle Noise
  • Adaptive Smoothing
  • Sparse Representation
  • Feature Space
   [1]      I. G. Cumming and F. H. Wong, “Digital Processing of Synthetic Aperture Radar Data,” Norwood, MA: Artech House, 2005.##
   [2]      J. Goodman, “Speckle Phenomena in Optics: Theory and Applications,” Roberts and Company Publishers, 2007.##
   [3]      A.Shafiee, E. Yazidian, and M. beheshti, “Speckle noise reduction and SAR image reconstruction using compressed sensing,” Journal of Radar, vol. 4, no. 2, pp. 19-29, 1395. (In Persian)##
   [4]       A. Schmitt, “Multiscale and Multidirectional Multilooking for SAR Image Enhancement,” IEEE ،Transactions on Geoscience and Remote Sensing, ­vol. 54, pp. 5117-5134, 2016.##
   [5]      D. Kuan, A. Sawchuk, T. Strand, and P. Chavel, “Adaptive restoration of images with speckle,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, pp.   373-383, 1987.##
   [6]      J.-S. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 2, pp. 165–168, 1980.##
   [7]      F. Argenti and L. Alparone, “Speckle removal from SAR images in the undecimated wavelet domain,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, pp. 2363-2374, 2002.##
   [8]      H. Xie, L. E. Pierce, and F. T. Ulaby, “SAR speckle reduction using wavelet denoising and markov random field modeling,” IEEE Trans. Geosci. Remote Sensing,  vol. 10, pp. 196–2212, 2002.##
   [9]      G. Aubert and J.-F. Aujol, “A variational approach to removing multiplicative noise,” SIAM J. Appl. Math. vol. 68, pp. 925–946, 2008.##
[10]      J. M. Bioucas-Dias and M. A. Figueiredo, “Multiplicative noise removal using variable splitting and constrained optimization,” IEEE Trans. Image Process. vol. 19, no. 10, pp. 1720–1730, 2010.##
[11]      J. Shi and S. Osher, “A nonlinear inverse scale space method for a convex multiplicative noise model,” SIAM J. Imaging Sci. vo1. 1, no. 3, pp. 294–321, 2008.##
[12]       S. Durand, J. Fadili, and M. Nikolova, “Multiplicative noise removal using l1 fidelity on frame coefficients,” J. Math. Imaging Vision. vol. 36, no. 3, pp. 201–226, 2010.##
[13]      N. Karimi, H. Amindavar, R. L. Kirlin and A. Rajabi, “Blind single image super resolution based on compressive sensing,” Journal of Visual Commu. Image Repres, vol. 33, pp. 94-103, 2015.##
[14]      C. He, L. Liu, L. Xu, M. Liu, and M. Liao, “Learning Based Compressed Sensing for SAR Image Super-Resolution,” IEEE Journal of Selected Topics in Applied Earth Observ. and Remote Sens., vol. 5, pp. 1272-1281, 2012.##
[15]      N. Karimi and M. Taban, “Nonparametric blind SAR image super resolution based on combination of the compressive sensing and sparse priors,” Journal of Visual Commu. Image Repres., vol. 55, pp. 853-865, 2018.##
[16]      Jing Dong, Zifa Han, Yuxin Zhao, Wenwu Wang, Ales Prochazka, and Jonathon Chambers, “Sparse analysis model based multiplicative noise removal with enhanced regularization,” Signal Processing, vol. 137, pp. 160-176, 2017.##
[17]      Hh Sh. Li, G. Wang, and X. Zhao, “Multiplicative noise removal via adaptive learned dictionaries and TV regularization,” Digital Signal Process., vol. 50, pp. 218-228, 2016.##
[18]      Y. Hao , X. Feng, and J. Xu, “Multiplicative noise removal via sparse and redundant representations over learned dictionaries and total variation,” Signal Process, vol. 92, pp. 1536–1549, 2012.##
[19]      Y.-M. Huang, L. Moisan, M. K. Ng, and T. Zeng, “Multiplicative noise removal via a learned dictionary,” IEEE Trans. Image Process, vol. 21, no. 11, pp.  4534–4543, 2012.##
[20]      Y. Dong and T. Zeng T, “A convex variational model for restoring blurred images with multiplicative noise,” SIAM J. Imaging Sci., vol. 6, pp. 1598–1625, 2013.##
[21]      H. Song, L. Qing, Y. Wu, and X. He, “Adaptive regularization-based space-time super-resolution reconstruction,” Signal. Process. Image Commun., vol. 28, pp. 763–778, 2013.##
[22]      F. Argenti, A. Lapini, T. Bianchi, L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 3, pp. 6–35, 2013.##
[23]      B. Scholkopf, A. Smola, and K.-R. Muller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural Computation, vol.10, no. 5, pp. 1299-1319, 1998.##
[24]      S. Mika, B. Schlkopf, A. Smola, K.-R. Mller, M. Scholz, and G. Rtsch, “Kernel pca and de-noising in feature spaces,” Advances in Neural Information Processing Systems 11, MIT Press, pp. 536-542, 1999.##
[25]      S. Boyd , N. Parikh , E. Chu , B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.##
[26]      T. Goldstein and S. Osher, “The split Bergman algorithm for l1 regularized problems,” SIAM J. Imaging Sci., vol. 2, pp. 323–343, 2009.##
[27]      J. Tropp, “Greed is good: algorithmic results for sparse approximation,” IEEE Trans. Inf. Theory, vol. 50, pp. 2231–2242, 2004.##
[28]      M. Aharon, M. Elad, and A. Bruckstein, “K-svd: an algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process, vol. 54, pp. 4311-4322, 2004.##
[29]      Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process, vol. 13, pp. 600-612, 2004.##
دوره 7، شماره 1 - شماره پیاپی 21
بهار و تابستان 98
شهریور 1398
صفحه 1-14
  • تاریخ دریافت: 07 بهمن 1397
  • تاریخ بازنگری: 20 فروردین 1398
  • تاریخ پذیرش: 11 خرداد 1398
  • تاریخ انتشار: 01 شهریور 1398