الگوریتم تمرکز خودکار سریع پارامتری در رادار دهانه مصنوعی معکوس مبتنی بر آنتروپی و تجزیه به مقادیر ویژه

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار دانشگاه شیراز

چکیده

در این مقاله یک روش سریع پارامتری مبتنی بر تجزیه به مقادیر ویژه و روش حداقل آنتروپی برای تمرکز خودکار در رادار دهانه مصنوعی معکوس (ISAR) ارایه می­گردد که نسبت به روش­های معمول تمرکز خودکار، بار محاسباتی کمتری دارد. در این روش، ماترس کوواریانس داده ISAR  فشرده شده و همتراز شده در جهت برد تشکیل شده و با استفاده از روش تجزیه به مقادیر ویژه، سیگنال و نویز جدا می­شوند. سپس از بردار‌‌‌‌‌­های ویژه مربوط به سیگنال که خیلی کمتر از کل بردار­های ویژه هستند تبدیل فوریه گرفته می­شود. در نهایت با استفاده از روش­های تمرکز خودکار مرسوم بر روی تصویر به‌دست آمده خطای فاز استخراج می­گردد. در این مقاله از روشی پارامتری مبتنی بر آنتروپی برای این کار استفاده شده است. نتایج به‌دست آمده از شبیه­سازی نشان می­دهد که با وجود کاهش بار محاسباتی، کارایی الگوریتم در جبران حرکت هدف حفظ شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Fast Parametric ISAR Autofocus Algorithm Based on Entropy and Eigenvalue Decomposition

نویسنده [English]

  • H. R. Hashempour
Shiraz University
چکیده [English]

In this paper, a fast-parametric method for ISAR autofocus is proposed which is based on the minimum entropy method and eigenvalue decomposition, and has less computational complexity than that of conventional autofocus methods. In this technique, the covariance matrix of the range compressed and aligned data is formed and by utilizing eigenvalue decomposition, signal and noise are separated. Then, the Fourier transform of the signal eigenvectors which are much smaller than the total eigenvectors is taken. Finally, by applying the conventional autofocus approaches to the image of eigenvectors, the phase error is estimated. In this paper, a parametric method based on entropy is utilized. The simulation results show that although the computational complexity is decreased, the performance of the algorithm is maintained.

کلیدواژه‌ها [English]

  • Entropy
  • Eigenvalue Decomposition
  • Autofocus
  • ISAR
 
   [1]      H. R. Hashempour, M. A. Masnadi-Shirazi, and A. Sheikhi, “Cyclic prefix-based OFDM ISAR imaging,” Iranian J. Sci. Technol., Trans. Elect. Eng., vol. 42, no. 2, pp. 239–249, 2018.##
   [2]      H. R. Hashempour and M. A. Masnadi-Shirazi, “Inverse synthetic aperture radar phase adjustment and cross-range scaling based on sparsity,” Digit. Signal Process., vol. 68, pp. 93–101, Sep. 2017.##
   [3]      H. R. Hashempour, M. A. Masnadi-Shirazi, and B. A. Arand, “Compressive sensing ISAR imaging with LFM signal,” In Proc. Iranian Conf. Electr. Eng. (ICEE), Tehran, Iran, pp. 1869–1873, May 2017.##
   [4]      B. Haywood and R. J. Evans, “Motion compensation for ISAR imaging,” In Proc. ASSPA 89, Adelaide, Australia, pp. 113–117, April 1989.##
   [5]      D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 3, pp. 827-835, July 1994.##
   [6]      R. P. Bocker, T. B. Henderson, S. A. Jones, and B. R. Frieden, “A new inverse synthetic aperture radar algorithm for translational motion compensation,” Proc. SPIE, vol. 1569, pp. 298–310, 1991.##
   [7]      L. Xi, L. Giosui, and J. Ni, “Autofocusing of ISAR images based on entropy minimisation,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 4, pp. 1240-1252, Oct. 1999.##
   [8]      J. Wang, X. Liu, and Z. Zhou, “Minimum-entropy phase adjustment for ISAR,” IEE Proc.-Radar, Sonar Navigat., vol. 151, no. 4, pp. 203–209, Aug. 2004.##
   [9]      F. Berizzi and G. Corsini, “Autofocusing of inverse synthetic aperture radar images using contrast optimization,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 3, pp. 1185-1191, July 1996.##
[10]      F. Berizzi and G. Corsini, “Focusing of two dimensional ISAR images of objects by contrast maximization,” Proc. Microw. Conf., Helsinki, Finland, pp. 951–956, August 1992.##
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[11]      M. Martorella, F. Berizzi, and B. Haywood, “A contrast maximization based technique for 2D ISAR autofocusing,” Proc. Inst. Elect. Eng. Radar, Sonar Navig., vol. 152, no. 4, pp. 253262, Aug. 2005.
[12]      C. V. Jakowatz, Jr., and D. E. Wahl, “Eigenvector method for maximum-likelihood estimation of phase errors in synthetic-aperture radar imagery,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 10, no. 12, pp. 2539–2546, Oct. 1993.
[13]      J. Duan, L. Zhang, and M. Xing, “A weighted eigenvector autofocus method for sparse-aperture ISAR imaging,” EURASIP J. Adv. Signal Process., vol. 2013, pp. 1–9, 2013.
[14]      S.-H. Lee, J.-H. Bae, M.-S. Kang, and K.-T. Kim, “Efficient ISAR autofocus technique using eigenimages,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 2, pp. 605–616, Feb. 2017.
[15]      S. Press WH et al, “Numerical recipes: the art of scientific computing,” Cambridge University Press, New York, pp. 120–122, 1987.
دوره 7، شماره 1 - شماره پیاپی 21
بهار و تابستان 98
شهریور 1398
صفحه 15-23
  • تاریخ دریافت: 15 فروردین 1398
  • تاریخ بازنگری: 08 تیر 1398
  • تاریخ پذیرش: 08 تیر 1398
  • تاریخ انتشار: 01 شهریور 1398