بررسی تأثیر شکل دهی سهموی کاتد بر عملکرد مگنترون نسبیتی

نویسندگان

دانشگاه شیراز

چکیده

در این مقاله نشان داده شده است که شکل­دهی کاتد مگنترون در راستای محور تقارن، منجر به تغییر منحنی­های هال و هارتری آن می­شود به­طوری که مجموعه­ای از منحنی­ها به­جای دو منحنی ایجاد می­شود. این امر سبب می­شود که احتمال تحریک همه مدها و هارمونیک­ها فراهم شود. درنتیجه یک لامپ پهن­باند به وجود می­آید. برای نمونه بدون اعمال تغییر در ساختار آند مگنترون، کاتد مگنترون نسبیتی A6 با حفظ تقارن محوری در راستای محور به­طور سهموی شکل داده شد و با استفاده از یک شبیه­ساز سه­بعدی ذره در سلول، نشان داده شد که توان خروجی به بیش از  MW400 می­رسد در حالی که گستره فرکانسی GHz 20-5 می باشد

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Parabolic Cathode Shaping on Relativistic Magnetron Performance

نویسندگان [English]

  • Hassan Zibaeinejad
  • Habibollah Abiri
چکیده [English]

In  this  paper,  it  is  demonstrated  that  shaping  of  the  cathode  along  the  symmetry  axis  in  a
relativistic  magnetron,  leads  to  a  shift  in  Hull  and  Hartree curves  in  such  a  way  that  a  set  of
curves  is  obtained  instead  of  only  two  curves.  This  results  in  excitation  of  numerous  harmonics
and  proposing  a  broadband  tube.  As  an  example,  without  any  changes  in  the  anode  structure,  A6
relativistic  magnetron  cathode  has  been  subjected  to  parabolic  shaping  parallel  to  the  symmetry
axis  preserving  the  axial  symmetry.  To  perform  a  study  with  this  regard,  employing  a  3D
particle  in  cell  simulation,  it  has  been  shown  that  the  output  power  can  exceed  400MW  while
the  frequency  ranges  from  5GHz  to 20 GHz.      
 

کلیدواژه‌ها [English]

  • Relativistic magnetron
  • Parabolic cathode shapin
  • Particle in cell simulation
  • wideband
[1] J. Benford, J. Swegle, and E. Schamiloglu, “High-Power Microwaves,” Taylor & Francis Group, NewYork, 2007.##
[2] T. Orzechowski and G. Bekefi, “Microwave emission from pulsed, relativistic e-beam diodes I: The smooth bore magnetron,” Physics of Fluids, vol. 22, pp. 978-85, 1979.##
[3] G. Bekefi and T. Orzechowski, “Giant Microwave Bursts Emitted from a Field-Emission, Relativistic-Electron-Beam Magnetron,” Physical Review Letters, vol. 37, pp. 376-82, 1976.##
[4] G. B. Collins, “Microwave Magnetrons,” McGraw-Hill, New York, 1948.##
[5]  A. S. Gilmour, “Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons,” Artech House, Boston, 2011.##
[6] Sh. Li,  F. Li, J. Yang,  T. Yan, B. Du, and W. Shi, “Development of a Miniaturized W-Band Spatial Harmonic Magnetron,” IEEE Transactions on Electron Devices, vol. 63, no. 7, pp. 2925-2929, 2016.##
[7] M. Fuks, S. Prasad and E. Schamiloglu, “Efficient Magnetron With a Virtual Cathode,” IEEE Transactions on Plasma Science, vol. 44, no. 8, pp 1298-1302, 2016.##
[8] D. F. Shi, B. L. Qian, H. G. Wang, W. Li, and G. X. Du, “A frequency tunable relativistic magnetron with a wide operation regime,” AIP Advances, vol. 7, pp. 025010-1-025010-12, 2017.##
[9] R. V. Lovelace and T. Young, “Relativistic Hartree condition for magnetrons: Theory and comparison with experiments,” Physics of Fluids, vol. 28, pp. 2450-2452, 1985.##
[10]  CST, “About CST Studio Suite Software,” www.cst.com/products/csts2, 2017.##
[11]  B. Goplen, L. D. Ludeking, D. Smithe, and  G. Warren, “User-Configurable MAGIC for electromagnetic PIC calculations,” Computer Physics Communications, vol. 87, pp. 54-86, 1985.##
[12]  Northropgrumman, “About MAGIC Software,”    www.northropgrumman.com/Capabilities/PICCodeSoftware/MAGIC/Pages/About-Magic.aspx, 2017.##