نوسان ساز تنظیم پذیر با ولتاژ مبتنی بر تشدیدگر مجتمع شده در زیرلایه (SIW)

نویسندگان

دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در این مقاله یک نوسان ساز تنظیم پذیر با ولتاژ و کم نویز در باند C ، مبتنی بر تشدیدگر مجتمع شده در زیرلایه، ارائهه شهده اسه همچنهین
تشدیدگرهای مجتمع شده در زیرلایه به شکل کامل بررسی و اثر پارامترهای مختلف بر عملکرد آن ها بررسی شهده اسه سهبا بها بررسه ی
نحوه ی تحریک و تنظیم پذیری این تشدیدگرها، یک تشدیدگر بهینه ی تنظیم پذیر در گستره ی فرکانسی GHz 5 تها GHz 1/9 طراحهی شهده
اس تشدیدگر تنظیم پذیر طراحی شده، ضریب کیفی بالایی دارد شبیه سازی این تشدیدگر بر روی زیرلایه ی RO4003 باضهخام mil ، 93
نشان می دهد ضریب کیفی در فرکانا تشدید GHz 5.5 ، در حدود 243 اس در ادامه نوسان ساز تنظیم پذیری مبتنی بر این تشدیدگر ارائه
شده اس که بهه ازا ی تغییه رات ولتهاژ کنتهرل از 2 تها 23 وله در محهدوده ی GHz 5/9 تها GHz 1/9 نوسهان کهرده و نهویز فهازی بهتهر از
dBc/Hz 662 در فاصله ی فرکانسی - KHz 633 از فرکانا نوسان مرجع GHz 5/5 دارد

کلیدواژه‌ها


عنوان مقاله [English]

Voltage Controlled Oscillator Based on Substrate Integrated Waveguide Resonator

نویسندگان [English]

  • Ali Nooraei Yeganeh
  • S. Arash ahmadi
K.N.Toosi University of Technology
چکیده [English]

In this paper a C-band, low phase noise voltage controlled oscillator is presented based on substrate integrated waveguide (SIW) resonator. As the SIW resonator plays a great role on the noise performance of the voltage controlled oscillator, the effects of some parameters on the performance of the SIW are investigated. Considering various techniques of excitation and tuning, an SIW resonator is designed in the frequency range of 5 to 6.3 GHz. The resulting tunable resonator has a quality factor of 240 at 5.5 GHz, when simulated on RO4003 substrate. The voltage controlled oscillator can oscillate from 5.3 GHz up to 6.3 GHz. The tuning voltage for this frequency range is between 2 and 20 Volts. The oscillator phase noise is better than -112dBc/Hz at 100 KHz offset from the 5.5 GHz carrier.

کلیدواژه‌ها [English]

  • Substrate Integrated Waveguide(SIW)
  • High Quality Factor Resonator
  • Tunable Resonator
  • Low Phase Noise Oscillator
  • Voltage Controled Oscillator (VCO)
  1. A. Poddar, “Slow Wave Resonator Based Tunable Multi‐Band Multi‐Mode Injection‐Locked Oscillators,” 2014.
  2. U. L. Rohde, A. Poddar, and G. Böck, “The design of modern microwave oscillators for wireless applications: theory and optimization,” J. Wiley & Sons, 2005.
  3. D. M. Pozar, “Microwave Engineering,” 3rd Ed. New York, J. Wiley & Sons, 2005.
  4. M. Violetti, M. Pellaton, C. Affolderbach, F. Merli, J. F. Zürcher, G. Mileti, and A. K. Skrivervik, “The microloop-gap resonator: A novel miniaturized microwave cavity for double-resonance rubidium atomic clocks,” IEEE Sensors Journal, vol. 14, no. 9, pp. 3193-3200, 2014.
  5. J. Choi and C. Seo, “Microstrip square open-loop multiple split-ring resonator for low-phase-noise VCO,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3245-3252, 2008.
  6. B. T. Moon and N. H. Myung, “Design of Low Phase-Noise Oscillator Based on a Hairpin-Shaped Resonator Using Composite Right/Left-Handed Transmission Line,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 1, pp. 44-46, 2014.
  7. H. Uchimura, T. Takenoshita, and M. Fujii, “Development of a laminated waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2438-2443, 1998.
  8. D. Deslandes and K. Wu, “Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide,” IEEE Transactions on microwave theory and techniques, vol. 54, no. 6, pp. 2516-2526, 2006.
  9. M. Bozzi, A. Georgiadis, and K. Wu, “Review of substrate-integrated waveguide circuits and antennas,” IET Microwaves, Antennas & Propagation, vol.5, no. 8, pp. 909-920, 2011.
  10. K. Entesari, A. Pourghorban Saghati, V. Sekar, and M. Armendariz, “Tunable SIW structures: antennas, VCOs, and filters,” IEEE Microwave Magazine, vol. 16, no. 5, pp. 34-54, 2015.
  11. A. Collado, F. Mira, and A. Georgiadis, “Mechanically tunable substrate integrated waveguide (SIW) cavity based oscillator,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, 489-491, 2013.
  12. J. D. Barrera, and G. H. Huff. "Analysis of a variable SIW resonator enabled by dielectric material perturbations and applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 225-233, 2013.
  13. F. F. He, K. Wu, W. Hong, L. Han, and X. Chen, “A low phase-noise VCO using an electronically tunable substrate integrated waveguide resonator,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3452-3458, 2010.
  14. Z. Chen, W. Hong, J. Chen, and J. Zhou, “Design of high-Q tunable SIW resonator and its application to low phase noise VCO,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 1, pp. 43-45, 2013.
  15. C. T. M. Wu, T. Itoh, A. K. Poddar, and U. L. Rohde, “A C-band tunable oscillator based on complementary coupled resonator using substrate integrated waveguide cavity,” In Microwave Conference (EuMC), 2014 44th European, pp. 715-718. IEEE, 2014.
  16. Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, “Dispersion characteristics of substrate integrated rectangular waveguide,” IEEE Microwave and Wireless Components Letters, vol. 12, no. 9, pp. 333-335, 2002.
  17. P. A. Rizzi, “Microwave engineering: passive circuits, Prentice Hall,” 1988.
  18. R. J. Cameron, R. Mansour, and C. M. Kudsia, “Microwave filters for communication systems: fundamentals, design and applications,” Wiley-Interscience, 2007.
  19. Z. Kordiboroujeni and J. Bornemann, “New wideband transition from microstrip line to substrate integrated waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 12, pp. 2983-2989, 2014.
  20. D. Deslandes and K. Wu, “Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 8, pp. 2487-2494, 2005.
  21. E. Soltani, et al., “Design, simulation and fabrication of a 2x2 patch array antenna with SIW feeding in X-band,” Journal of Radar, Imam Hossein Comprehe.