آشکارسازی اهداف در تصاویر پلاریمتریک راداری با استفاده از تصویرسازی به زیرفضای متعامد

نویسندگان

دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

تفکیک و آشکارسازی پراکنشکننده های موجود در پیکسل های تصویری، از اهداف اصلی کاربردهلای سلنجش از دور راداری اسلصا تصلاویر
پلاریمتریک راداری در مقایسه با تصاویر راداری تک کاناله، اطلاعات بیشتری را در مورد جزئیات پراکنشکنندگ اهداف و پس زمینه در خلود
جای داده اندا بنابراین، از قابییص بیشتری در تشخیص و آشکارسازی اهداف برخوردارندا در این مقاله، از منظر جدیدی به مسللیه آشکارسلازی
اهداف در تصاویر پلاریمتریک راداری نگریسته و روش را ارائه خواهیم داد که به طور هم زمان، تداخل های مربوط به پراکنشکننده های موجود
در پس زمینه را حذف و هدف موردنظر را آشکارسازی کندا در این روش، فرض بر این اسص که چند پراکنشکننده استاندارد در پوشش زمین
پیکسل تصویری قرار دارند که ترکیب خط آن ها تشکیل دهنده بلردار پلراکنش ت لص شلده در تصلویر اسلصا اسلتفاده از ایلن روش، موجلب
آشکارسازی دقیق مناطق مسکون م شودا

کلیدواژه‌ها


عنوان مقاله [English]

Detection of Targets in Polarimetric Radar Images Using Orthogonal Subspace Projection

نویسندگان [English]

  • reza Bordbari
  • yaser Maghsoudi
K.N.Toosi University of Technology
چکیده [English]

Detection and characterization of the constituent scatterers for each pixel in the scene is one of the fundamental goals of microwave remote sensing. Compared with synthetic aperture radar (SAR) sensing, polarimetric SAR (PolSAR) sensing has finer details of the scattering properties of targets and natural background; therefore, it can increase the detectability of single and partial targets. In this paper, a new and fresh look at the target detection issue is taken and an effective technique which simultaneously annihilates interfering background is developed that detects the presence of a scattering mechanism of interest. Several canonical scattering mechanisms are assumed as our signal sources whose combination forms scattering vector of each pixel with appropriate weight fractions. Using this technique leads to the exact detection of partial targets and build-up areas.

کلیدواژه‌ها [English]

  • Remote Sensing
  • Polarimetric Radar
  • target detection
  • Projection
  • Orthogonal Subspace *
  1. J. S. Lee and E. Pottier, “Polarimetric radar imaging: from basics to applications,” CRC press, 2009.
  2. J. J. van Zyl, “Synthetic aperture radar polarimetry,” vol. 2, John Wiley & Sons, 2011.
  3. S. Cloude, “Polarization: applications in remote sensing, Oxford University Press, 2009.
  4. S. W. Chen, Y.-Z. Li, X.-s.Wang, S.-P. Xiao, and M. Sato, “Modeling and Interpretation of Scattering Mechanisms in Polarimetric Synthetic Aperture Radar: Advances and Perspectives,” Signal Processing Magazine, IEEE, vol. 31, pp. 79- 89, 2014.
  5. S. R. Cloude and E. Pottier, “A review of target decomposition theorems in radar polarimetry,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 34, pp. 498-518, 1996.
  6. L. M. Novak, M. B. Sechtin, and M. J. Cardullo, “Studies of target detection algorithms that use polarimetric radar data,” IEEE Transactions on Aerospace and Electronic Systems, vol. 25, pp. 150-165, 1989.
  7. J. Chen, Y. Chen, and J. Yang, “Ship detection using polarization cross-entropy,” IEEE Geoscience and Remote Sensing Letters, vol. 6, pp. 723-727, 2009.
  8. A. Marino, S. R. Cloude, and I. H. Woodhouse, “A polarimetric target detector using the huynen fork,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, pp. 2357-2366, 2010.
  9. J. Yang, Y.-N. Peng, and S.-M. Lin, “Similarity between two scattering matrices,” Electronics Letters, vol. 37, p. 1, 2001.
  10. L. M. Novak, M. C. Burl, and W. Irving, “Optimal polarimetric processing for enhanced target detection,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, pp. 234-244, 1993.
  11. F. Brigui, et al., “New SAR algorithm based on orthogonal projections for MMT detection and interference reduction,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 7, 2014.
  12. F. Brigui, et al., “New SAR target imaging algorithm based on oblique projection for clutter reduction,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 2, 2014.
  13. S. R. Cloude, “Uniqueness of target decomposition theorems in radar polarimetry,” in Direct and inverse methods in radar polarimetry, Ed: Springer, 1992.
  14. S. R. Cloude and E. Pottier, “A review of target decomposition theorems in radar polarimetry,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 2, pp. 498–518, 1996.
  15. J. W. Goodman, “Some fundamental properties of speckle,” Journal of the Optical Society of America, vol. 66, no. 11, pp. 1145–1150, 1976.
  16. H. H. Lim, et al., “Classification of earth terrain using polarimetric synthetic aperture radar images,” Journal of Geophysical Research, vol. 94, (B6), pp. 7049–7057, 1989.
  17. C. Lopez-Martinez and X. Fabregas, “Polarimetric SAR speckle noise model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 10, pp. 2232–2242, 2003.
  18. J. S. Lee and K. Hoppel, “Principal components transformation of multifrequencypolarimetric SAR imagery,” IEEE Trans. Geosci. Remote Sensing, vol. 30, pp. 686–696, 1992.
  19. J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach,” IEEE Transactions on geoscience and remote sensing, vol. 32, no. 4, 1994.
  20. Y. Yamaguchi, T. Moriyama, M. Ishido, and H. Yamada, “Four- component scattering model for polarimetric SAR image decomposition,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 8, pp. 1699-1706, Aug. 2005.