تجزیه داده های پلاریمتری رادار با روزنه مصنوعی بر مبنای امضاءهای پلاریمتریک و مدل های ساختار پراکندگی مرجع

نویسندگان

1 دانشگاه صنعتی خواجه نصیرالدین طوسی

2 خواجه نصیرالدین خواجه نصیرالدین طوسی

چکیده

تجزیه داده های پلاریمتری یکی از گام های مهم در تجزیه و تحلیل داده های راداری با روزنه مصنوعی می باشد. در روش هاای پییایت تنهاا از
اطلاعات یک پایه پلاریزاسیون میخص استفاده شده است. در ایت تحقیق، یک روش جدید بارای تجزیاه داده هاای راداری بار ماناای ام اا ء
پلاریمتریک ارائه می شود. الگوریتم پیینهادی دارای دو گام اصلی انتخاب ام اء پلاریمتریک مرجا و تییایت ساهم سااتتارهای پراکنادگی
مرج می باشد. در ایت تحقیق، از داده های تمام پلاریمتریک سنجنده Radarsat2 مربوط به شهر سانفرانسیسکو واق در ایالت کالیفرنیا آمریکا
و شهر نیگاتا ژاپت مربوط به سنجنده Pi-SAR که به ترتیب در طول موج های C و L اتذ شده اند، استفاده شده است. الگاوریتم پی یانهادی باا
چهار روش تجزیه Y4O ، Y4R ، Arii - NNED و Freeman مقایسه شده است. با توجه به نتایج حاصلشده در روش پیینهادی، شااهد کااه
برآورد بی از اندازه ساتتار پراکندگی حجمی و افزای سااتتار پراکنادگی دووجهای در منااطق شاهری با هتصاوص در منااطق باا زاویاه
جهت گیری زیاد نسات به پرتو رادار هستیم. همچنیت از آنجاییکه مقادیر توان تجزیاه شاده باا اساتفاده از روش پییانهادی هماواره م اات
می باشند، بنابرایت میکل منفی شدن توان حاصلشده مطرح نمی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Polarimetric SAR Data Decomposition Based On Polarimetric Signatures And Reference Scattering Models

نویسندگان [English]

  • Yaser Maghsoudi 1
  • Saeid Taleghani 2
1 K.N.Toosi University of Technology
2 K.N.Toosi University of Technology
چکیده [English]

The polarimetric decomposition is one of the most important steps in SAR data processing and analyzing. Conventional decomposition methods use polarimetric information only in a restricted number of polarization bases. This paper presents a new decomposition method based on polarimetric signatures. The proposed decomposition includes two main steps: 1) selection of the reference polarimetric signatures, and 2) Classification of the pixel's polarimetric signature. The presented method was tested on the Radarsat-2 image in C band collected over San Francisco and the Pi-SAR image in L band collected over Niigata University in Japan. The proposed decomposition was compared with Y4O, Y4R, Arii-NNED and Freeman decomposition methods. According to the results of the suggested method, in urban areas especially in areas with a large orientation angle, it is clearly seen that the overestimation of the volume contribution has been reduced and the double-bounce contribution has been increased. In addition, the obtained power values of the proposed decomposition

کلیدواژه‌ها [English]

  • polarimetric synthetic aperture radar (PolSAR)
  • Polarimetric signature
  • Decomposition
  • Scattering Contributions
  1. J. S. Lee and E. Pottier, “Polarimetric radar imaging: from basics to applications:,” CRC press, 2009.
  2. Y. Maghsoudi, M. J. Collins, and D. G. Leckie, “Radarsat-2 polarimetric SAR data for boreal forest classification using SVM and a wrapper feature selector,” Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 6, pp. 1531-1538, 2013.
  3. W. L. Cameron, N. N. Youssef, and L. K. Leung, “Simulated polarimetric signatures of primitive geometrical shapes,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 34, pp. 793-803, 1996.
  4. A. Freeman and S. L. Durden, “A three-component scattering model for polarimetric SAR data,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 36, pp. 963-973, 1998.
  5. Y. Yamaguchi, A. Sato, W.-M. Boerner, R. Sato, and H. Yamada, “Four-component scattering power decomposition with rotation of coherency matrix,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 49, pp. 2251-2258, 2011.
  6. M. Arii, J. J. Van Zyl, and Y. Kim, “A general characterization for polarimetric scattering from vegetation canopies,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 48, pp. 3349-3357, 2010.
  7. S. W. Chen, X.-S. Wang, S.-P. Xiao, and M. Sato, “General polarimetric model-based decomposition for coherency matrix,” Geoscience and Remote Sensing, IEEE Transactions on, vol. 52, pp. 1843-1855, 2014.
  8. J. J. Zyl, H. A. Zebker, and C. Elachi, “Imaging radar polarization signatures: Theory and observation,” Radio Science, vol. 22, pp. 529-543, 1987.
  9. M. Jafari, Y. Maghsoudi, V. Zoej, and M. Javad, “A New Method for Land Cover Characterization and Classification of Polarimetric SAR Data Using Polarimetric Signatures,” Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 8, pp. 3595-3607, 2015.
  10. M. Migliaccio, F. Nunziata, and A. Gambardella, “Polarimetric signature for oil spill observation,” in US/EU-Baltic International Symposium, 2008 IEEE/OES, pp. 1-5, 2008.
  11. Y. Shelat, B. Leblon, A. Larocque, J. Harris, C. Jefferson, D. Lentz, et al., “Effects of incidence angles on mapping accuracy of surficial materials in the Umiujalik Lake area, Nunavut, using RADARSAT-2 polarimetric SAR images,” Part 2, Polarimetric analysis, Canadian Journal of Remote Sensing, vol. 38, pp. 404-423, 2012.
  12. M. Jafari, Y. Maghsoudi, and M. J. V. Zoej, “Analyzing polarimetric signatures for different features in polarimetric SAR data,” in Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, pp. 2782-2785, 2014.
  13. J. A. Richards, “Remote sensing with imaging radar, vol. 1, Springer, 2009.
  14. M. Migliaccio, F. Nunziata, and A. Gambardella, “Polarimetric signature for oil spill observation,” in 2008 IEEE/OES US/EU-Baltic International Symposium, pp. 1-5, 2008.
  15. J. J. van Zyl, “Synthetic aperture radar polarimetry,” vol. 2, John Wiley & Sons, 2011.
  16. Y. Yamaguchi, T. Moriyama, M. Ishido, and H. Yamada, “Four-component scattering model for polarimetric SAR image decomposition,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, pp. 1699-1706, 2005.
  17. Y. Yamaguchi, A. Sato, W.-M. Boerner, R. Sato, and H. Yamada, “Four-component scattering power decomposition with rotation of coherency matrix,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 2251-2258, 2011.
  18. S. Porzycka, J. Strzelczyk, M. Bielecka, and A. Leśniak, “Preliminary pattern recognition in polarimetric signatures,” in Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp. 3486-3488, 2012.
  19. O. A. De Carvalho and P. R. Meneses, “Spectral correlation mapper (SCM): an improvement on the spectral angle mapper (SAM),” in Summaries of the 9th JPL Airborne Earth Science Workshop, JPL Publication, pp. 0-18, 2000.
  20. Y. Yamaguchi, Y. Yajima, and H. Yamada, “A four-component decomposition of POLSAR images based on the coherency matrix,” IEEE Geoscience and Remote Sensing Letters, vol. 3, pp. 292-296, 2006.