کاهش نرخ نمونه‌برداری و بهبود عملکرد سیستمیِ رادار FMCW با استفاده از تکنیک حسگری فشرده دوگانه

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی شیراز

چکیده

بنا به تئوری حسگری فشرده اگر سیگنالی قابلیت نمایش تُنُک در فضایی مناسب را داشته باشد می‌توان با استفاده از روش‌های بهینه‌سازی، بازسازی دقیق سیگنال را از روی مشاهداتی به مراتب کمتر از آنچه که تئوری شانون لازم می‌داند انجام داد. وجه تمایز سیگنال از نویز، همین قابلیت نمایش تنک برای سیگنال و عدم این ویژگی برای نویز است و از طرف دیگر، یافتن جواب در حسگری فشرده منوط به یافتن تنک‌ترین جواب است؛ بنابراین با این تکنیک می‌توان سیگنالِ تمیز را از نویز جدا کرد. در رادار FMCW فاصله اهداف از روی فرکانس سیگنال خروجی گیرنده به‌دست می‌آید. از آنجایی که این سیگنال در حوزه فرکانس نمایشی تنک دارد بنابر نظریه حسگری فشرده، می‌توان با تعداد کمی از داده‌ها، آن را به طور مطلوب بازسازی کرد. همچنین در این مقاله با ارائه روش جدیدی برای پردازش سیگنال در رادار FMCW مبتنی بر حسگری فشرده، نشان داده می‌شود که می‌توان اثر نویز در سیگنال خروجی گیرنده را کاهش و عملکرد سیستمیِ ‌رادار را بهبود داد.

کلیدواژه‌ها


عنوان مقاله [English]

Sampling Rate Reduction and System Performance Improvement of FMCW Radar Using Dual Compressed Sensing Technique

نویسندگان [English]

  • Mostafa Mozaffari
  • Sadegh Samadi
چکیده [English]

Based on the compressed sensing theory, if a signal is sparse in a suitable space, by using the
optimization methods, signal could be accurately reconstructed from measurements that are
significantly less than the theoretical Shannon requirements. The sparse representation may exist
for the signal and it is not available for the noise; this could be used to distinguish these two. On
the other hand, in compressed sensing, finding the answer hinges on finding the most sparse
solution; thus this technique can separate clean signal from the noise. In FMCW radar, the
distance of a target could be obtained from the frequency of the receiver output signal. Since this
signal has a sparse representation in the frequency domain, based on compressed sensing theory,
it could be reconstructed from a few number of data. In this paper, a new method for signal
processing of FMCW radar is presented based on compressed sensing. Moreover, by
considering noise removal feature that is in the nature of this technique, it is shown that the
effect of noise on the receiver output signal can be reduced and the system performance of the
radar can be improved.

کلیدواژه‌ها [English]

  • Compressed Sensing
  • FMCW Radar
  • Noise Removal
  • Sampling
  • Sparse Representation
  1. D. L. Donoho, “Compressed Sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289-1306, 2006.
  2. J. A. Tropp, and A. C. Gilbert, “Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655-4666, 2007.
  3. G. Shi, J. Lin, X. Chen, F. Qi, et al., “Uwb Echo Signal Detection with Ultra-Low Rate Sampling Based on Compressed Sensing,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 4, pp. 379-383, 2008.
  4. J. L. Paredes, G. R. Arce, and Z. Wang, “Ultra-Wideband Compressed Sensing: Channel Estimation,” Selected Topics in IEEE Journal of Signal Processing, vol. 1, no. 3, pp. 383-395, 2007.
  5. M. Herman, and T. Strohmer, “Compressed Sensing Radar,” in Radar Conference, 2008. RADAR'08. IEEE, pp. 1-6, 2008.
  6. C.-Y. Chen, and P. Vaidyanathan, “Compressed Sensing in Mimo Radar,” in 42nd Asilomar Conference on Signals, Systems and Computers, 2008, pp. 41-44, 2008.
  7. M. A. Herman, and T. Strohmer, “High-Resolution Radar Via Compressed Sensing,” IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2275-2284, 2009.
  8. Greub, Werner H. “Linear algebra,” Vol. 23. Springer Science & Business Media, 2012.
  9. Christensen, Ole. “An introduction to frames and Riesz bases,” Springer Science & Business Media, 2013.
  10. S. G. Mallat, and Z. Zhang, “Matching Pursuits with Time-Frequency Dictionaries,” IEEE Transaction on Signal Processing, vol. 41, no. 12, pp. 3397-3415, 1993
  11. E. J. Candes, J. K. Romberg, and T. Tao, “Stable Signal Recovery from Incomplete and Inaccurate Measurements,” Communications on pure and applied mathematics, vol. 59, no. 8, pp. 1207-1223, 2006.
  12. E. J. Candès, J. Romberg, and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489-509, 2006
  13. E. J. Candes, and T. Tao, “Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies?,” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406-5425, 2006.
  14. H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed Norm,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp. 289-301, 2009.
  15. E. Van Den Berg, and M. P. Friedlander, “Probing the Pareto Frontier for Basis Pursuit Solutions,” SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890-912, 2008.
  16. Y. Jin, and B. D. Rao, “Performance Limits of Matching Pursuit Algorithms,” in IEEE International Symposium on Information Theory, pp. 2444-2448, 2008.
  17. T. Jihua, S. Jinping, Z. Yuxi, N. Ahmad, et al., “The Effects of Input Signal-to-Noise Ratio on Compressive Sensing Sar Imaging,” in 2nd International Conference on Signal Processing Systems (ICSPS), pp. V3-533-V3-537, 2010.
  18. J. A. Tropp, and S. J. Wright, “Computational Methods for Sparse Solution of Linear Inverse Problems,” Proceedings of the IEEE, vol. 98, no. 6, pp. 948-958, 2010.
  19. W. Wang, and R. Wu, “High Resolution Direction of Arrival (Doa) Estimation Based on Improved Orthogonal Matching Pursuit (Omp) Algorithm by Iterative Local Searching,” Sensors, vol. 13, no. 9, pp. 11167-11183, 2013.
  20. X. Liu, D. Peng, W. Guo, X. Ma, et al., “Compressed Sensing Photoacoustic Imaging Based on Fast Alternating Direction Algorithm,” Journal of Biomedical Imaging, vol. 2012, no. 12, 2012.
  21. A. M. Abdulghani, A. J. Casson, and E. Rodriguez-Villegas, “Quantifying the Performance of Compressive Sensing on Scalp Eeg Signals,” in 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, pp. 1-5, 2010.
  22. N. Cao, X. Hu, H. Lu, and M. Mao, “Cooperative Spectrum Sensing Algorithm Based on Cs-Slim Iterative Minimization Sparse Learning,” International Journal of Distributed Sensor Networks, vol. 2013, 2013.
  23. C. Hegde, and R. G. Baraniuk, “Sampling and Recovery of Pulse Streams,” IEEE Transactions on Signal Processing, vol. 59, no. 4, pp. 1505-1517, 2011.
  24. Douglas A. Lyon: “The Discrete Fourier Transform, Part 4: Spectral Leakage”, in Journal of Object Technology, vol. 8. no. 7, November - December 2009 pp. 23 - 34.
  25. N. Wan-zheng, W. Hai-yan, W. Xuan, and Y. Fu-zhou, “The Analysis of Noise Reduction Performance in Compressed Sensing,” in IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1-5, 2011.
  26. F. Marvasti, A. Amini, F. Haddadi, M. Soltanolkotabi, et al., “A Unified Approach to Sparse Signal Processing,” in EURASIP Journal on Signal Processing., vol. 2012, pp. 44, 2012.
  27. P .E. Pace, “Detecting and Classifying Low Probability of Intercept Radar”; Artech House, 2009.
  28. Z. Zarei, M. M. Madani, R. Mohseni “Detection of Phase Code Modulated LPI Radar Signals using Time-Frequency Distributions and Comparing with Power Function of Matched Detector,” Journal