Target Localization by One Element Reciever Using Frequency Diverse Array Radars

Document Type : Original Article

Authors

1 PhD student, Shiraz University, Shiraz, Iran

2 Professor, Shiraz University, Shiraz, Iran

Abstract

Frequency Diverse Arrays (FDAs), are kind of arrays in which a unique waveform is transmitted from each element by a small carrier frequency offset across the array elements. This small carrier frequency offset in frequency diverse array (FDA) radars leads to the interesting range-angle-time dependent beampattern of FDA radars which is different from the angle only dependent beampattern of phased arrays. In this paper, the received signal from a linear frequency diverse array radar is modeled and simulated and it is shown that this signal is a function of range and angle. Then by investigating the received signal from FDA radars more deeply, the possibility of target localization using one element receiver in these arrays is proved. Finally, based on the intrinsic coupling between the range and angle in FDA radars, the algorithm for target localization by one element receiver in one-target and multiple-target scenarios is proposed. The simulation results show the validity of the proposed algorithm.

Keywords


[1]     P. F. Sammartino, C. J. Baker, and H. D. Griffiths, “Frequency diverse MIMO techniques for radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 49, pp. 201–222, 2013.##
[2]     P. Antonik, M. C. Wicks, H. D. Griffiths, and C. J. Baker, “Frequency diverse array radars,” Proc. IEEE Radar Conf., Verona, NY, 2006.##
[3]     M. Secmen, S. Demir, A. Hizal, and T. Eker, “Frequency diverse array antenna with periodic time modulated pattern in range and angle,” Proc. IEEE Radar Conf., Boston, MA, USA, 2007.##
[4]     W. Q. Wang, H. C. So, and H. Z. Shao, “Nonuniform frequency diverse array for range-angle imaging of targets,” IEEE Sens. J., vol. 14, no. 8, pp. 2469–2476, 2014.##
[5]     W. Khan, I. M. Qureshi, A. Basit, and W. Khan, “Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset,” IEEE Antenn Wirel Propag Lett, vol. 15, pp. 885–888, 2016.##
[6]     A. Basit, I. Qureshi, W. Khan, S. Rehman, and M. M. Khan, “Beam pattern synthesis for an FDA radar with hamming window based nonuniform frequency offset,” IEEE Antenn Wirel Propag Lett, vol. 16, no. 99, pp. 2283–2286, 2017.##
[7]     Z. Wang, W. Q. Wang, and H. Shao, “Range-azimuth decouple beamforming for frequency diverse array with costas-sequence modulated frequency offsets,” Eurasip Journal on Advances in Signal Processing, vol. 2016, no. 1, 2016.##
[8]     J. Xiong, W. Q. Wang, H. Shao, and H. Chen, “Frequency diverse array transmit beampattern optimization with genetic algorithm,” IEEE Antenn Wirel Propag Lett, vol. 16, pp. 469–472, 2017.##
[9]     H. Shao, J. Dai, J. Xiong, H. Chen, and W. Q. Wang, “Dot-shaped range-angle beampattern synthesis for frequency diverse array,” IEEE Antenn Wirel Propag Lett, vol. 15, pp. 1703–1706, 2016.##
[10]  K. Gao, W. Q. Wang, H. Chen, and J. Cai, “Transmit beamspace design for multi-carrier frequency diverse array sensor,” IEEE Sens. J., vol. 16, no. 14, pp. 5709–5714, 2016.##
[11]  Y. Liu, H. Ruan, L.Wang, and A. Nehorai, “The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing,” IEEE J. Sel. Topics Signal Process., vol. 11, no. 2, pp. 29-308, Mar. 2016.##
[12]  S. Qin, Y. D. Zhang, M. G. Amin, and F. Gini, “Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization,” IEEE J. Sel. Topics Signal Process., vol. 11, no. 2, pp. 321-335, 2017.##
[13]  Y. Liu, “Range azimuth indication using a random frequency diverse array,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016.##
[14]  W. Q. Wang, and H. C. So, “Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar,” IEEE Trans. Signal Process., vol. 62, pp. 2000–2011, 2014.##
[15]  S. Luo Wang, Z. H. Xu, and X. Liu, W. Dong, and G. Wang, “Subarray-Based Frequency Diverse Array for Target Range-Angle Localization with Monopulse Processing,” IEEE Sens. J., vol. 18, pp. 5937-5947, 2018.##
[16]  W. Q. Wang, “Subarray-based frequency diverse array radar for target range-angle estimation”, IEEE Trans. Aerosp. Electron. Syst., vol. 50, pp. 3057–3067, 2014.##
[17]  Y. Xua, X. Shia, J. Xub, L. Huangc, W. Lia, “Range–angle-decoupled beampattern synthesis with subarray-based frequency diverse array,” Elsevier journal of Digital Signal Process., vol. 64, pp. 49-59, 2017.##
[18]  W. Q. Wang, and H. Shao, “Range-Angle Localization of Targets by A Double-Pulse Frequency Diverse Array Radar,” IEEE J. Sel. Topics Signal Process., vol. 8, pp. 106–114, 2014.##
[19]  K. Gao, H. Shao, H. Chen, J. Cai, and W.Q. Wang, “Impact of frequency increment errors on frequency diverse array MIMO in adaptive beamforming and target localization,” Digit. Signal Process., vol. 44, pp. 58-67, 2015.##
[20]  J. Xu, G. Liao, S. Zhu, L. Huang, and H. C. So, “Joint range and angle estimation using MIMO radar with frequency diverse array,” IEEE Trans. Signal Process., vol. 63, no. 13, pp. 3396_3410, 2015.##
[21]  P. C. Gong, W. Q. Wang, F. C. Li, and H. C. So, “Sparsity-aware transmit beamspace design for FDA-MIMO radar,” Elsevier journal of Signal Process., vol. 144, no. 1, pp. 99–103, 2018.##
[22]  J. Xu, G. Liao, S. Zhu, L. Huang, and H. C. So, “Joint Range and Angle Estimation Using MIMO Radar with Frequency Diverse Array,” IEEE Trans. Signal Process., vol. 63, pp. 3396–3410, 2015.##
[23]  W. Khan, I. M. Qureshi, A. Basit and M. Zubair, “A Double Pulse MIMO Frequency Diverse Array Radar for Improved Range-Angle Localization of Target,” Wirel. Pers. Commun. Journal, vol. 82, pp. 2199–2213, 2015.##
[24]  R. Çetiner, Ş. Demir, and A. Hizal, “Range and angle measurement in a linear pulsed Frequency Diverse Array radar,” IEEE Radar Conference, Seattle, WA, pp. 64-67, 2017.##
[25]  M. Golabi, A. Sheikhi, M. Biguesh, “DOA estimation of targets by one element reciever using FDA radars,” sixth Iranian Conference on Radar and Surveillance Systems, Isfahan, 2019 (in Persian).##
W. Q. Wang, M. Dai, and Z. Zheng, “FDA Radar Ambiguity Function Characteristics Analysis and Optimization,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, pp. 1368-1380, 2018. ##
Volume 8, Issue 2 - Serial Number 24
February 2021
Pages 97-109
  • Receive Date: 17 May 2020
  • Revise Date: 24 August 2020
  • Accept Date: 28 October 2020
  • Publish Date: 21 December 2020