[1] H. Krim and M. Viberg, ‘‘Two Decades of Array Signal Processing Research: The Parametric Approach,’’ IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, 1996.
[2] H. L. Van Trees, Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory. New York, NY, USA: Wiley, 2002.
[3] T. E. Tuncer and B. Friedlander, Classical and Modern Direction-of-Arrival Estimation. New York, NY, USA: Academic, 2009.
[4] J. Li, D. Li, D. Jiang and X. Zhang, “Extended-Aperture Unitary Root MUSIC-Based DOA Estimation for Coprime Array,” IEEE Communications Letters, vol. 22, no. 4, pp. 752-755, 2018.
[5] J. Kim and C. S. Sin, “Impact of Mutual Coupling on Performance of DoA Estimation using MUSIC,” 2018 International Conference on Information and Communication Technology Convergence (ICTC), 2018, pp. 460-462.
[6] R. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation,” IEEE Transactions Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.
[7] D. Zhang, Y. Zhang, G. Zheng, C. Feng and J. Tang, “Improved DoA Estimation Algorithm for Co-Prime Linear Arrays Using Root-MUSIC Algorithm,” Electronics Letters, vol. 53, no. 18, pp. 1277-1279, 2017.
[8] G. Liu, H. Chen, X. Sun and R. C. Qiu, “Modified MUSIC Algorithm for DoA Estimation with Nyström Approximation,” IEEE Sensors Journal, vol. 16, no. 12, pp. 4673-4674, 2016.
[9] J. Capon, “High-Resolution Frequency-Wavenumber Spectrum Analysis,” Proceedings of the IEEE, vol. 57, no. 8, pp. 1408-1418, 1969.
[10] X. Zhang, Z. He, B. Liao, X. Zhang and W. Peng, “Robust Quasi-Adaptive Beamforming Against Direction-of-Arrival Mismatch,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 3, pp. 1197-1207, June 2018.
[11] X. Wang, and M. Amin, “Design of Optimum Sparse Array for Robust MVDR Beamforming Against DoA Mismatch,” 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1-5, 2017.
[12] L. Lu and H. C. Wu, “Novel Robust Direction-of-Arrival-Based Source Localization Algorithm for Wideband Signals,” IEEE Transactions on Wireless Communications, vol. 11, no. 11, pp. 3850-3859, 2012.
[13] L. Lu and H. C. Wu, “Robust Expectation–Maximization Direction-of-Arrival Estimation Algorithm for Wideband Source Signals,” IEEE Transactions on Vehicular Technology, vol. 60, no. 5, pp. 2395-2400, 2011.
[14] L. Lu, H. C. Wu and S. C. H. Huang, “Robust Novel EM-Based Direction-of-Arrival Estimation Technique for Wideband Source Signals,” International Conference on Communications and Mobile Computing, pp. 72-76, 2010.
[15] I. Ziskind and M. Wax, “Maximum Likelihood Localization of Multiple Sources by Alternating Projection,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 10, pp. 1553–1560, 1988.
[16] Tie-Jun Shan, M. Wax and T. Kailath, “On Spatial Smoothing for Direction-of-Arrival Estimation of Coherent Signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 33, no. 4, pp. 806-811, August 1985.
[17] R. Muhamed and T.S. Rappaport, “Direction of Arrival Estimation Using Antenna Arrays,” Tech. Rep. MPRG-TR96-03, Virginia Tech, Blacksburg, VA, 1996.
[18] D. Malioutov, M. Cetin and A. S. Willsky, “A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3010-3022, 2005.
[19] C. Zhou, Y. Gu, Y. D. Zhang, Z. Shi, T. Jin and X. Wu, “Compressive Sensing-Based Coprime Array Direction-of-Arrival Estimation,” IET Communications, vol. 11, no. 11, pp. 1719-1724, 2017.
[20] X. Yang, C. C. Ko and Z. Zheng, “Direction-of-Arrival Estimation of Incoherently Distributed Sources Using Bayesian Sompressive Sensing,” IET Radar, Sonar & Navigation, vol. 10, no. 6, pp. 1057-1064, 2016.
[21] M. Hawes, L. Mihaylova, F. Septier and S. Godsill, “Bayesian Compressive Sensing Approaches for Direction of Arrival Estimation with Mutual Coupling Effects,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 3, pp. 1357-1368, 2017.
[22] Q. Shen, W. Liu, W. Cui and S. Wu, “Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review,” IEEE Access, vol. 4, pp. 8865-8878, 2016.
[23] B. Lin, J. Liu, M. Xie and J. Zhu, “Direction-of-Arrival Tracking via Low-Rank Plus Sparse Matrix Decomposition,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1302-1305, 2015.
[24] Z. Yang, J. Li, P. Stoica, and L. Xie, “Sparse Methods for Direction-of-Arrival Estimation,” arXiv:1609.09596, 2016.
[25] M. Elad, Sparse and Redundant Representations, From Theory to Applications in Signal and Image Processing, Springer, 2010.
[26] Z. Shi, C. Zhou, Y. Gu, N. A. Goodman and F. Qu, “Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective,” IEEE Sensors Journal, vol. 17, no. 3, pp. 755-765, 2017.
[27] D. L. Donoho, and M. Elad, “Optimally Sparse Representation in General (nonorthogonal) Dictionaries via ℓ1 Minimization,” Proceedings of the National Academy of Sciences, vol. 100, no. 5, pp. 2197-2202, 2003.
[28] G. Xu and Z. Xu, “Compressed Sensing Matrices from Fourier Matrices,” IEEE Transactions on Information Theory, vol. 61, no. 1, pp. 469-478, 2015.
[29] S. Qin, Y. D. Zhang and M. G. Amin, “Generalized Coprime Array Configurations for Direction-of-Arrival Estimation,” IEEE Transactions on Signal Processing, vol. 63, no. 6, pp. 1377-1390, 2015.
[30] Z. He, Z. Shi, L. Huang and H. C. So, “Underdetermined DOA Estimation for Wideband Signals Using Robust Sparse Covariance Fitting,” IEEE Signal Processing Letters, vol. 22, no. 4, pp. 435-439, 2015.
[31] M. Yangg, A. M. Haimovich, B. Chen and X. Yuan, “A New Array Geometry for DOA Estimation with Enhanced Degrees of Freedom,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, pp. 3041-3045, 2016.
[32] P. Pal and P. P. Vaidyanathan, “Coprime Sampling and the MUSIC Algorithm,” Proc. IEEE Digit. Signal Process. Workshop and IEEE Signal Process. Educ. Workshop (DSP/SPE), pp. 289–294, 2011.