SINR Improvement in the Array Radar Using the Joint Design of Transmit-and-Receive Beamforming Vectors

Document Type : Original Article

Authors

1 دانشگاه صنعتی شریف

2 دانشگاه صنعتی خواجه نصیر تهران

Abstract

In this paper, the problem of joint optimization of transmit–and-receive Beamforming vectors in array radar is considered. Here, our goal is to maximize the signal-to-interference-plus-noise ratio (SINR) for a point like target in the presence of multiple signal dependent interferences. Therefore, we propose an iterative algorithm, which is based on the convex optimization solution and in each iteration of it, the constrained transmit beamformer is designed by a relaxation and randomization technique. In addition to power constraint, the constant envelop constraint on the transmit beamformer is considered which is important in practice. Simulation results show that the proposed method is able to achieve a higher SINR in comparison with the conventional phased array radar. it is also possible to get close to the performance of non-constrained method by considering the constant envelop constraint.

Keywords


[1] J. Li and P. Stoica, “MIMO Radar Signal Processing,” New York, NY, USA: Wiley, 2009.
[2] S. A. Moghaddasi, H. Khaleghi, and M. Fallah, “Beam pattern design in phased MIMO radars for known target locations,” Journal of Radar, vol. 3, no. 4, pp. 25-32, 2016 (in Persian).
[3] J. Yang, Z. Qiu, W. Jiang, and X. Li, “Poly-phase codes optimization for multi-input-multioutput radars,” Signal Processing, IET, vol. 7, no. 2, pp. 93–100, April 2013.
[4] J. Lipor, S. Ahmed, and M.-S. Alouini, “Fourier-based transmit beampattern design using MIMO radar,” IEEE Trans. Signal Process , vol. 62, no. 9, pp. 2226–2235, May 2014.
[5] S. Ahmed, J. Thompson, Y. Petillot, and B. Mulgrew, “Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern,” IEEE Trans. Signal Process, vol. 59, no. 8, pp. 3837–3849, Aug. 2011.
[6] D. Fuhrmann and G. San Antonio, “Transmit beamforming for MIMO radar systems using signal cross-correlation,” IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 1, pp. 171–186, January 2008.
[7] P. Stoica, J. Li, and X. Zhu, “Waveform synthesis for diversity-based transmit beampattern design,” IEEE Trans. Signal Process, vol. 56, no. 6, pp. 2593–2598, June 2008.
[8] S. Ahmed, J. Thompson, Y. Petilot, and B. Mulgrew, “Finite alphabet constant-envelope waveform design for MIMO radar,” Signal Processing, IEEE Transactions on, vol. 59, no. 11, pp. 5326–5337, Nov. 2011.
[9] S. Jardak, S. Ahmed, and M. Alouini, “Generation of correlated finite alphabet waveforms using Gaussian random variables,” pp. 1–1, 2014.
[10] S. Ahmed and M.-S. Alouini, “MIMO-radar waveform covariance matrix for high SINR and low side-lobe levels,” IEEE Trans. Signal Process, vol. 62, no. 8, pp. 2056–2065, Jan. 2014.
[11] S. Imani, S. A. Ghorashi, and M. Bolhasani, “SINR maximization in colocated MIMO radars using transmit covariance matrix,” Signal Processing, vol. 119, no. in Press, pp. 128–135, Aug. 2015.
[12] G. Cui, H. Li, and M. Rangaswamy, “MIMO radar waveform design with constant modulus and similarity constraints,” IEEE Trans. Signal Process, vol. 62, no. 2, pp. 343–353, Jan. 2014.
[13] S. Imani and S. A.Ghorashi, “Sequential quasi-convex-based algorithm for waveform design in colocated multiple-input- multiple-output radars,” IET Signal Processing, vol. 10, no. 3, pp. 309–317, May 2016.
[14] S. Imani and S. Ghorashi, “Transmit signal and receive filter design in co-located mimo radar using a transmit weighting matrix,” Signal Processing Letters, IEEE, vol. 22, no. 10, pp. 1521–1524, Oct. 2015.
[15] J. Liu, H. Li, and B. Himed, “Joint optimization of transmit and receive beamforming in active arrays,” Signal Processing Letters, IEEE, vol. 21, no. 1, pp. 39–42, Jan. 2014.
[16] S. Boyd and L. Vandenberghe, “Convex Optimization,” New York, Cambridge university press, 2004.
[17] A. De Maio, S. De Nicola, Y. Huang, Z.-Q. Luo, and S. Zhang, “Design of phase codes for radar performance optimization with a similarity constraint,” IEEE Trans. Signal Process, vol. 57, no. 2, pp. 610–621, Feb. 2009.
[18] A. De Maio, Y. Huang, M. Piezzo, S. Zhang, and A. Farina, “Design of optimized radar codes with a peak to average power ratio constraint,” IEEE Trans. Signal Process, vol. 59, no. 6, pp. 2683–2697, June 2011.