Document Type : Original Article
Authors
1 Master's degree, Malek Ashtar University of Technology, Tehran, Iran
2 Associate Professor, Malek Ashtar University of Technology, Tehran, Iran
Abstract
Keywords
[2] Y. Bar-Shalom, W. D. Blair, “Multitargte-Multisensor Tracking Application and Advances Volume III”, Artech House, 2000.
[3] ChengzhiQu , Yan Zhang * , Xin Zhang and Yang Yang Reinforcement Learning-Based Data Association for Multiple Target Tracking in Clutter Received: 23 September 2020; Accepted: 17 November 2020; Published: 18 November 2020
[4] Turkmen, I.; Guney, K. Cheap Joint Probabilistic Data Association with Adaptive Neuro-Fuzzy Inference System State Filter for Tracking Multiple Targets in Cluttered Environment. AEU Int. J. Electron. Commun. 2004, 58, 349–357.
[5] Song, T.L.; Lee, D.G. A probabilistic nearest neighbor filter algorithm form validated measurements. IEEE Trans. Signal Process. 2006, 54, 2797–2802.
[6] Wang, J.; Su, X.; Zhao, L.; Zhang, J. Deep Reinforcement Learning for Data Association in Cell Tracking.Front. Bioeng. Biotechnol. 2020, 8, 298.1
[7] Gruyer, D.; Demmel, S.; Magnier, V.; Belaroussi, R. Multi Hypotheses Tracking using the Dempster-Shafer Theory. pplication to ambiguous road context. Inf. Fusion 2016, 29, 40–56
[8] S. Chen and Y. Xu, “A new Joint Possibility Data Association Algorithm Avoiding Track Coalescence”International Journal ofIntelligent Systems and Applications, Vol. 3,No. 2, pp. 45-51, 2011.
[9] B. Hebtemariam, R. Tharmarasa, T.Thayaparan, M. Mallick, and T. Kirubarajan, “A Multiple-Detection Joint Probabilistic Data Association Filter” IEEE Journal of Selected Topics in Signal Processing,Vol. 7,No.3, pp. 461-471, June 2013.
[10] E. M. Saad, EL. Bardawiny, H. I. ALI and N. M. Shawky, “Filtered Gate Structure Applied to Joint Probabilistic Data Association for Multi-Target Tracking in Dense Clutter Environment ” IJCSI InternationalJournal of Computer Science Issues, Vol. 8, Issue 2, March 2011.
[11] Sinha, A.; Ding, Z.; Kirubarajan, T.; Farooq, M. Track Quality Based Multitarget Tracking Approach forGlobal Nearest-eighbor Association. IEEE Trans. Aerosp. Electron. Syst. 2012, 8, 179–1191.
[12] He, S.; Shin, H.S.; Tsourdos, A. Multi-sensor multi-target tracking using domain knowledge and clustering.IEEE Sens. J. 2018, 18, 8074–8084.
[13] Liangqun, L.;Weixin, X. Intuitionistic fuzzy joint probabilistic data association filter and its application tomultitarget tracking. Signal Process. 2014, 96, 433–444.
[14] Sathyan, T.; Chin, T.J.; Arulampalam, S.; Suter, D. A multiple hypothesis tracker for multitarget tracking with multiple simultaneous measurements. IEEE J. Sel. Top. Signal Process. 2013, 7, 448–460.
[15] Gnane, S.S.; Pathipati, S. Soft and evolutionary computation based data association approaches for tracking multiple targets in the presence of ECM. Expert Syst. Appl. 2017, 77, 83–104.
[16] Li Zhang; Yuan Li; RamakantNevatiamultiple.Global data association for multi-object tracking using network flows2008 IEEE Conference on Computer Vision and Pattern Recognition
[17] Songhwai Oh; Stuart Russell; Shankar Sastry. GlobMarkov Chain Monte Carlo Data Association for Multi-Target TrackingIEEE Transactions on Automatic Control ( Volume: 54, Issue: 3, March 2009)
[18] R. Karlsson; F. Gustafsson;Monte Carlo data association for multiple target trackingIEEE Target Tracking: Algorithms and Applications (Ref. No. 2001/174)
[19] Zheng Wu; AshwinThangali; Stan Sclaroff; MargritBetke;Coupling detection and data association for multiple object tracking. 2012 IEEE Conference on Computer Vision and Pattern RecognitionIEEE Target Tracking: Algorithms and Applications (Ref. No. 2001/174)
[20] D. Sengupta; R.A. Iltis;Neural solution to the multitarget tracking data association problem IEEE Transactions on Aerospace and Electronic Systems ( Volume: 25, Issue: 1, January 1989)