Cavity Backed Monopulse antenna with printed patch, 45° linear polarization, high gain and high efficiency

Document Type : Original Article

Authors

1 PhD student, Malik Ashtar University of Technology, Tehran, Iran

2 Associate Professor, Malik Ashtar University of Technology, Tehran, Iran

3 Associate Professor, Malek Ashtar University of Technology, Tehran, Iran

Abstract

This article presents a comprehensive step-by-step design and simulation process for a new multilayer monopulse antenna operating in the Ku frequency band. The antenna is designed to exhibit high gain, high efficiency, low sidelobe levels, and 45° linear polarization. The radiating element employs a microstrip antenna with waveguide feeding. To mitigate coupling between the radiation elements in the array structure, a metal cavity is strategically placed between the feeding network and the radiation patch. Additionally, a sub-array is designed to simplify the feeding network, incorporating a cavity power divider and feeding slots between the layers to reduce the antenna's overall height. A two-dimensional Chebyshev distribution is employed to design a 1 to 48 power divider. Through simulation, the antenna demonstrates an 11% bandwidth, 38.4 dB gain, sidelobe levels better than 19 dB in both planes, an approximate beam width of 2.4 degrees at the center frequency, efficiency higher than 86%, and a null depth better than -38 dB. The radiation patterns exhibit good symmetry in both the E and H planes. A one-twelfth scale model of the antenna is constructed, with measurement results showing excellent agreement with the simulation.

Keywords


p>Smiley face

[1]  Skolnik, M.: ‘Introduction to Radar Systems’, McGraw-Hill, New York, NY, 3rd Edition, 2001.
[2]  Greco, F., G. Amendola, Luigi Boccia, and Emilio Arnieri. "A dual band hat feed for reflector antennas in QV band." In 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1-4. IEEE, 2016.
[3]  Li, Mingjian, and Kwai-Man Luk. "Low-cost wideband microstrip antenna array for 60-GHz applications." IEEE Transactions on Antennas and Propagation, vol.62 pp. 3012-3018, 2014.
[4]  Mavaddat, Ali, Seyyed Hossein Mohseni Armaki, and Ali Reza Erfanian. "Millimeter-Wave Energy Harvesting Using 4×4 Microstrip Patch Antenna Array." IEEE Antennas and wireless propagation letters, vol.14 pp. 515-518, 2014. 
[5]  Kim, Dongjin, Jiro Hirokawa, Makoto Ando, Jun Takeuchi, and Akihiko Hirata. "64×64-Element and 32×32-Element Slot Array Antennas Using Double-Layer Hollow-Waveguide Corporate-Feed in the 120 GHz Band." IEEE Transactions on Antennas and Propagation, vol.62 pp.1507-1512, 2014.
[6]  Tekkouk, Karim, Jiro Hirokawa, Ronan Sauleau, Mauro Ettorre, Makoto Sano, and Makoto Ando. "Dual-layer ridged waveguide slot array fed by a Butler matrix with sidelobe control in the 60-GHz band." IEEE Transactions on Antennas and Propagation, vol. 63 pp.3857-3867, 2015.
[7]  Sáez, Alejandro Jiménez, Alejandro Valero-Nogueira, Jose Ignacio Herranz, and Bernat Bernardo. "Single-layer cavity-backed slot array fed by groove gap waveguide." IEEE Antennas and Wireless Propagation Letters, vol.15 pp. 1402-1405, 2015.
[8]  Wang, Hao, Da-Gang Fang, and X. G. Chen. "A compact single layer monopulse microstrip antenna array." IEEE Transactions on antennas and propagation, vol. 54 pp. 503-509, 2006.
[9]  Colak, Ogun, and Demet S. Armagan Sahinkaya. "SLL suppressed monopulse microstrip antenna design." In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1855-1856. IEEE, 2014.
[10]               Liu, Bing, Wei Hong, Zhenqi Kuai, Xiaoxin Yin, Guoqing Luo, Jixin Chen, Hongjun Tang, and Ke Wu. "Substrate integrated waveguide (SIW) monopulse slot antenna array." IEEE Transactions on Antennas and Propagation, vol. 57 pp.275-279, 2005.
[11]               Cheng, Yu Jian, Wei Hong, and Ke Wu. "94 GHz substrate integrated monopulse antenna array." IEEE transactions on antennas and propagation, vol. 60 pp.121-129, 2011.
[12]               Bhartia, P., Bahl, I., Garg, R., et al.: ‘Microstrip antenna design handbook’(Artech House, Norwood, MA, USA, 2001)
[13]               Tomura, Takashi, Jiro Hirokawa, Takuichi Hirano, and Makoto Ando. "A 45                     Linearly Polarized Hollow-Waveguide 16×16-Slot Array Antenna Covering 71–86 GHz Band." IEEE Transactions on Antennas and Propagation, vol. 62 pp. 5061-5067, 2014.
[14]               You, Yang, Yunlong Lu, Yi Wang, Wen-Wen Yang, Zhang-Cheng Hao, Qingchun You, and Jifu Huang. "High-performance E-band continuous transverse stub array antenna with a 45° linear polarizer." IEEE Antennas and Wireless Propagation Letters, vpl. 18 pp. 2189-2193, 2019.
[15]               Hua, Guang, Jiefu Zhang, Jiudong Wu, and Wei Hong. "Design and optimization of a millimetre wave compact folded Magic-T." International Journal of Antennas and Propagation 2012.
[16]               Singh, Yatendra Kumar, and Ajay Chakrabarty. "Design and sensitivity analysis of highly compact comparator for ku-band monopulse radar." In 2006 International Radar Symposium, pp. 1-4. IEEE, 2006.
[17]               Li, Teng, Hongfu Meng, Wenbin Dou, Guifen Xia, and Huaicheng Zhu. "Design of low sidelobe slotted waveguide monopulse antenna array." In Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, pp. 212-214. IEEE, 2014.
[18]               Najm, Fariba Ghasemi, Amirafshar Moshtaghpour, and Mohsen Kaboli. "Modeling, design and optimization of dual mode circular planar monopulse slot array antenna in X-band." In 2014 22nd Telecommunications Forum Telfor (TELFOR), pp. 788-791. IEEE, 2014.
[19]               Huang, Guan-Long, Shi-Gang Zhou, and Tan-Huat Chio. "Highly-efficient self-compact monopulse antenna system with integrated comparator network for RF industrial applications." IEEE Transactions on Industrial Electronics, vol. 64 pp. 674-681, 2016.
[20]               Vosoogh, Abbas, Abolfazl Haddadi, Ashraf Uz Zaman, Jian Yang, Herbert Zirath, and Ahmed A. Kishk. "W-band low-profile monopulse slot array antenna based on gap waveguide corporate-feed network." IEEE Transactions on Antennas and Propagation, vol. 66 pp. 6997-7009, 2018.
[21]               Vazquez-Roy, Jose Luis, Adrián Tamayo-Domínguez, Eva Rajo-Iglesias, and Manuel Sierra-Castañer. "Radial line slot antenna design with groove gap waveguide feed for monopulse radar systems." IEEE Transactions on Antennas and Propagation vol. 67 pp. 6317-6324, 2019.
[22]               D. He, T. Zhang, E. Wang, L. Chen and J. Yang, "Design of a Low Sidelobe Monopulse Array Antenna with Hybrid Feeding Structure," 2019 International Symposium on Antennas and Propagation (ISAP), 2019.
[23]               Kumar, Hemant, and Girish Kumar. "Broadband monopulse microstrip antenna array for X‐band monopulse tracking." IET Microwaves, Antennas & Propagation vol. 12 pp. 2109-2114, 2018.
[24]               Wang, Zixi, Yun Hu, Lei Xiang, Jun Xu, and Wei Hong. "A Wideband High-Gain Planar Monopulse Array Antenna for Ka-Band Radar Applications." IEEE Transactions on Antennas and Propagation, vol. 71 pp. 8739-8752, 2023.
[25]               Nagaraju, Dovari, Bivin G. Mathew, and Yogesh K. Verma. "Compact broadband electromagnetically coupled stacked patch monopulse antenna array at X-band." In 2021 15th European Conference on Antennas and Propagation (EuCAP), 2021.
[26]               Sun, Zhichao, Shaobin Liu, Wenhui He, Tong An, Zhiyong Hu, Yuning Yang, and Xinyuan Zheng. "A 2D substrate integrated waveguide monopulse slot antenna array with dual‐mode comparator" International Journal of RF and Microwave Computer‐Aided Engineering, 2022.
[27]               Jiang, Xun, Yongrong Shi, Weihua Yu, Fangxiu Jia, Xiaoming Wang, and Qihui Wu. "A Compact Ka-Band Low Side-Lobe Monopulse Antenna Array Based on Mixed Gap Waveguide and Hollow Waveguide Multilayer Feeding Network." IEEE Transactions on Antennas and Propagation, vol. 71 pp. 8714-8725, 2023.
[28]              Arand, Bijan Abbasi, and Amir Bazrkar. "Design and implementation of a high efficiency microstrip array antenna for X‐band monopulse tracking applications." IET Microwaves, Antennas & Propagation, vol. 14 pp. 1272-1282, 2020.
Volume 11, Issue 1
Serial number 29, spring and summer quarterly
August 2023
  • Receive Date: 24 May 2023
  • Revise Date: 20 July 2023
  • Accept Date: 06 August 2023
  • Publish Date: 23 August 2023