Simulation, parametric study and fabrication of slow wave structure for use in Radial Line Slot Array (RLSA) Antennas

Document Type : Original Article

Authors

1 PhD student, Imam Hossein University (AS), Tehran, Iran

2 Assistant Professor, Imam Hossein University (AS), Tehran, Iran

3 Professor, University of Science and Technology, Tehran, Iran

Abstract

Radial line slot array (RLSA) antennas are a type of high-efficiency plane array antenna used to generate circular polarization. In these antennas, the second-floor wave-guide is filled with a dielectric material to eliminate the grating lobes caused by the array of structures. All input power to the antenna must pass through a confined space that includes dielectric, air, and metal. This space has corners where the intensity of the electric field will be very high and, therefore, at high powers, will reduce the power transmission capacity of the antenna. For this reason, instead of using a dielectric in the space between two wave-guides, a slow radial wave structure is used. In this paper, first, a mathematical analysis of slow-wave structure is performed based on the Fluke theory. Next, a slow-wave structure is designed, simulated, and optimized for use in a 10.2 GHz Radial line slot array antenna.

The simulation results showed that the minimum reflection coefficient is -20 dB, and its bandwidth is 251 MHz. Finally, a prototype of the simulated antenna was constructed using the proposed structure. Antenna power analysis showed that the minimum tolerable antenna power is 625 MW.

Keywords


Smiley face

[1]     K. Zhang, D. Li, K. Chang, K. Zhang, & D. Li, "Electromagnetic theory for microwaves and optoelectronics," Springer, 1998.
[2]     G. A. T. Warren L. Stutzman, "Antenna Theory and Design," Wiley, 2012, p. 848.
[3]     H. Arai, "Radial Line Slot Antennas," in Handbook of Antenna Technologies, Z. N. Chen, D. Liu, H. Nakano, X. Qing, and T. Zwick, Eds. Singapore: Springer Singapore, pp. 1773-1785, 2016,
[4]     A. H. W. Beck, "Space charge waves, and slow electromagnetic waves," 1958.
[5]     A. F. Harvey, "Periodic and Guiding Structures at Microwave Frequencies," IEEE Transactions on Microwave Theory and Techniques, vol. 8, no. 1, pp. 30-61, 1960.
[6]     A. Tamayo-Domínguez, J.-M. Fernández-González, & M. Sierra-Castañer, "Monopulse RLSA antenna with gap-waveguide feeding network for space debris radar at 94 GHz," in 2018 48th European Microwave Conference (EuMC), pp. 400-403, 2018.
[7]     A. Mazzinghi, M. Albani, A. J. I. A. Freni, & P. Magazine, "LP-RLSA design for low-cost transportable BASYLIS radar [antenna applications corner]," vol. 55, no. 5, pp. 275-285, 2013.
[8]     M. Ando, K. Sakurai, N. Goto, K. Arimura, Y. J. I. t. o. a. Ito, & propagation, "A radial line slot antenna for 12 GHz satellite TV reception," vol. 33, no. 12, pp. 1347-1353, 1985.
[9]     M. Ando, S. Ito, H. Kawasaki, & N. Goto, "Design of a radial line slot antenna with improved input VSWR," Electronics and Communications in Japan (Part I: Communications), vol. 71, no. 9, pp. 76-91, 1988.
[10]   C. A. Balanis, "Antenna theory: a review," Proceedings of the IEEE, vol. 80, no. 1, pp. 7-23, 1992.
[11]   K. Kelly, F. J. I. T. o. A. Goebels, & Propagation, "Annular slot monopulse antenna arrays," vol. 12, no. 4, pp. 391-403, 1964.
[12]   M. Ando, K. Sakurai, N. J. I. T. o. A. Goto, & Propagation, "Characteristics of a radial line slot antenna for 12 GHz band satellite TV reception," vol. 34, no. 10, pp. 1269-1272, 1986.
[13]   M. Takahashi, J. Takada, M. Ando, & N. Goto, "Characteristics of small-aperture, single-layered, radial-line slot antennas," in IEE Proceedings H (Microwaves, Antennas and Propagation), vol. 139, no. 1, pp. 79-83, 1992.
[14]   M. Takahashi., "Dual circularly polarized radial line slot antennas," vol. 43, no. 8, pp. 874-876, 1995.
[15]   P. W. Davis, M. E. J. I. A. Bialkowski, & P. Magazine, "Linearly polarized radial-line slot-array antennas with improved return-loss performance," vol. 41, no. 1, pp. 52-61, 1999.
[16]   A. Akiyama., "High gain radial line slot antennas for millimetre wave applications," vol. 147, no. 2, pp. 134-138, 2000.
[17]   Y. Kim, J. Lee, H. Chae, J. Park, S.-C. Kim, & S. J. E. L. Nam, "60 GHz band radial line slot array antenna fed by rectangular waveguide," vol. 38, no. 2, pp. 59-60, 2002.
 
[18]   J. F. González, P. Padilla, G. Expósito-Domínguez, M. J. I. A. Sierra-Castañer, & W. P. Letters, "Lightweight portable planar slot array antenna for satellite communications in X-band," vol. 10, pp. 1409-1412, 2011.
[19]   J. Xu, Z. N. Chen, X. J. I. T. o. A. Qing, & Propagation, "270-GHz LTCC-integrated strip-loaded linearly polarized radial line slot array antenna," vol. 61, no. 4, pp. 1794-1801, 2012.
[20]   T. Nguyen., "An equivalent double layer model for a fast design and analysis of high gain-multilayer radial line slot antennas," vol. 96, no. 11, pp. 2891-2900, 2013.
[21]   C.-W. Yuan, S.-R. Peng, T. Shu, Z.-Q. Li, H. J. I. T. o. A. Wang, & Propagation, "Designs and experiments of a novel radial line slot antenna for high-power microwave application," vol. 61, no. 10, pp. 4940-4946, 2013.
[22]   Y. J. I. T. o. A. Rahmat-Samii & Propagation, "Useful coordinate transformations for antenna applications," vol. 27, no. 4, pp. 571-574, 1979.
[23]   S. Peng, C. Yuan, & T. Shu, "Analysis of a high power microwave radial line slot antenna," Review of Scientific Instruments, vol. 84, no. 7, p. 074701, 2013.
[24]   H. Sasazawa, Y. Oshima, K. Sakurai, M. Ando, N. J. I. t. o. a. Goto, & propagation, "Slot coupling in a radial line slot antenna for 12-GHz band satellite TV reception," vol. 36, no. 9, pp. 1221-1226, 1988.
[25]  X. Pan, C. G. Christodoulou, J. Lawrance, J. McConaha, & M. Landavazo, "Cold & hot tests of an S-band antenna for high power microwave systems," presented at the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017. Available: http://dx.doi.org/10.1109/apusncursinrsm.2017.8072356
Volume 9, Issue 2 - Serial Number 26
November 2022
Pages 119-131
  • Receive Date: 13 April 2022
  • Revise Date: 04 October 2022
  • Accept Date: 16 October 2022
  • Publish Date: 22 November 2022