A New Driving Method for a Magnetron Tube Using Phase-Shifted Half-Bridge Converter

Document Type : Original Article

Authors

1 Instructor, Shahid Madani University of Azerbaijan, Tabriz, Iran

2 Professor, Department of Electrical Engineering, Shahid Madani University of Azerbaijan, Tabriz, Iran

3 Associate Professor, Imam Hossein University, Tehran, Iran

4 Associate Professor, Shahid Madani University of Azerbaijan, Tabriz, Iran

Abstract

This article studies the design of a power modulator for driving a magnetron tube. In this design the
power modulator works with the half-bridge structure, series resonator and phase shift control method.
In this scheme, by controlling the switching phase shift,
the balance condition of magnetization current is
satisfied and the maximum amount of core saturation current is reduced. As a result, the current stress
of switches is reduced and switching and core losses are reduced. So, the size, weight and the cost of the
core of the power transformer will reduce. Also, using leakage inductance of the power transformer, the
series-resonance circuit is provided soft switching condition is guaranteed. Suggested power modulator,
is able to control the peak and average output power with the minimum loss. The maximum power of a
microwave oven is about 1000 w and its average power is 250 W which is controlled proportionally to the
inverter on-state periods. Other advantages to the proposed design are simplicity of the power circuit,
decrease in the number of switching elements, decrease in the switching losses, and decrease in the
leakage inductance of the power transformer. The design results have been verified through simulated of
the
PSCAD software and laboratory tests.

Keywords


   [1]      M. V. Reddy, K. S. Hemanth, and C. Mohan, “Microwave power transmission—A next generation power transmission system,” IOSR J. Elect. Electron. Eng., vol. 4, no. 5, pp. 24–28, 2013.##
   [2]      M. Aljohani, A. Mrebit, L. L. Monte, and M. C. Wicks, “Radar imaging using pseudo-coherent marine radar technology” IET Radar, Sonar & Navigation, vol. 14, no. 6, 2020##
   [3]      M. R. Banaei, A. Nasiri, S. M. Alavi, and S. Hosseinzadeh “Voltage Control of Magnetron Power Supply Utilizing Active Clamp Flyback Converter,” Scientific Journal of Applied Electromagnetics, vol. 7, no. 1, pp. 73–82, 2019. (In Persian)##
   [4]      Y. J. Woo, M. C. Lee, K. C. Lee, and G. H. Cho, “One-Chip Class-E Inverter Controller for Driving a Magnetron” IEEE Trans on Industry Electronics, vol. 56, no. 2, pp. 561-569, 2009##
   [5]      Y. R. Yang “Design of a Voltage-Fed Quasi-E Resonant Inverter for Cooker Magnetrons” IEEE International Conference on Power Electronics, Drives and Energy Systems, 2012,##
   [6]      B. M. Hasanien and K. F. A. Sayed, “Current source ZCS PFM DC-DC converter for magnetron power supply,” 12th International Middle-East Power System Conference, MEPCON 2008, pp. 464-469##
   [7]      A. Nasiri, M. R. Banaei, and A. S. S. Abadi, “Phase-Shifted Active Clamp Flyback Converter for Driving a Magnetron” in Proc. IEEE Int. 27th Iranian Conference on Electrical Engineering (ICEE2019), Conf., 2019, pp. 2106-2110.##
   [8]      M. J. Kim, W. S. Choi, I. W. Jeong, H. C. Park, and K. H. Park “A New Driving Method of the Magnetron Power Supply for a Sulfur Plasma Lamp” IEEE Trans on Industrial Electronics, vol. 63, no. 9, pp. 492-499, 2016.##
   [9]      S. W. Choi, I. O. Lee, and J. Y. Lee, “Design of 5-kV/5-kW Magnetron Power Supply Using PWM SRC with PISOConnected Transformer” IEEE Trans. on Plasma Scienve, vol. 46, no. 8, pp. 2840 – 2847, 2018.##
[10]      M. Zarghani, S. Mohsenzade, A. Hadizade, and S. Kaboli, “An Extremely Low Ripple High Voltage Power Supply for Pulsed Current Applications” IEEE Trans. on Power Electron, vol. 35, no. 8, pp. 4491-4502, 2020.##
[11]      I. K. Baek, M. Sattorov, R. Bhattacharya, S. Kim, D. Hong, S. H. Min, and G. S. Park, “Origin of Sideband and Spurious Noises in Microwave Oven Magnetron” IEEE Trans. on Electron Devices, vol. 64, no. 8, pp.1513-1521, 2017.##
[12]      M. K. Joshi, S. K. Vyas, T. Tiwari, and R. Bhattacharjee, “Radar imaging using pseudo-coherent marine radar technology” IEEE Trans. on Plasma Science, vol. 46, no. 3, pp.871-879, 2018.##
[13]      W. Xu, M. Xu, J. Jiang, S. Xu, and X. Feng, “Impact of Sputtering Power on Amorphous In–Al–Zn–O Films and Thin Film Transistors Prepared by RF Magnetron Sputtering” IEEE Trans. on Electron Devices, vol. 66, no. 5, pp. 985-993, 2019.##
[14]      L. Zhang, L. J. R. Nix, and A. W. Cross, “Magnetron Injection Gun for High-Power Gyroklystron” IEEE Trans. on Electron Devices, vol. 67, no. 11, pp.2148-2157, 2020.##
[15]      A. Nasiri, and A. S. S. Abadi, “A New Driving Method for a Magnetron Using a Soft Switching Active Clamp Fly-back Converter” in Proc. IEEE Int. 10th Power Electronics, Drive Systems and Technologies, Conf., 2019, pp. 735-740.##
[16]      J-K Han, J-W Kim, B-H Lee, J-S Lai, and G-W Moon, “High-Efficiency Asymmetrical Half-Bridge Converter with a New Coupled Inductor Rectifier (CIR),” IEEE Trans on Power Electron, vol. 34, no. 12, pp. 11541-11552 , 2019##
[17]      H. Beyhaghi, R. F. Mofrad, “Design and Implementation of a Post Regulator Circuit to Achieve a High MTI Improvement Factor in a Phase Array Radar Transmitter” jurnal of Radar, vol. 6, no. 1, pp. 7–20, 2019. (In Persian)##
[18]      J. M. Kwon and B. H. Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fule cell power system,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 108-115, 2009.##
[19]      A. Nasin, M. R. Banaei, and S. Rahirni, “Phase-Shifted Half-Bridge Resonant Inverter for Driving Magnetron,” Power Electronics, Drive Systems and Technologies. Conf, IEEE Int 10th, 2019, pp. 735-740.##
[20]      A. R. Rezaei, Z. Cheraghi, “Design and Construction of 100W Solid State Pulse Amplifier by using CW Amplifier Modules” jurnal of Radar, vol. 5, no. 4, pp. 39–48,  2018. (In Persian)##
[21]      A. Nasiri, and M. R. Banaei, “A New Magnetron Driving Method Using a Phase Shifted Active Clamp Forward Converter for Sulfur Plasma Tube Applications” IET Power Electronics, vol. 14, no. 2, pp. 442-453, 2021.##
[22]      J. H. Cho, K. B. Park, J. S. Park, G. W. Moon, and M. J. Youn, “Design of a digital offset compensator eliminating transformer magnetizing current offset of a phase-shift full-bridge converter,” IEEE Trans. on Power Electron, vol. 27, no. 1, pp. 331–341, 2012.##
[23]      N. Z. Saadabad, S. H. Hosseini, A. Nasiri, and M. Sabahi, “A New Soft Switched High Gain Three-Port DC-DC Converter with Coupled Inductors” IET Power Electronics, vol. 13, no. 19, pp. 4562-4571, 2021.##
[24]      A. Nasiri, M. R. Banaei, S. M. Alavi, and S. Hosseinzadeh “Reduction the Loss of Magnetic Core in a forward
Converter for Driving a Magnetron Tube NASHRIYYAH-I MUHANDISI-I BARQ VA MUHANDISI-I AMPYUTAR-I IRAN, A-MUHANDISI-I BARQ, vol. 18, no. 4, pp. 1-10, 2020. (In Persian)##
[25]      J. H. Cho, K. B. Park, J. S. Park, G. W. Moon, and M. J. Youn, “Design of a digital offset compensator eliminating transformer magnetizing current offset of a phase-shift full-bridge converter,” IEEE Trans. on Power Electron., vol. 27, no. 1, pp. 331–341, 2012.##
[26]      J-K Han, J-W Kim, and G-W Moon, “A High-Efficiency Asymmetrical Half-Bridge Converter With Integrated Boost
Converter in Secondary Rectifier,” IEEE Trans. on Power Electron, vol. 32, no. 11, pp. 8237 - 8242, nov 2017.##
[27]      J. Lu, and K. Afridi, “High-Efficiency Impedance Control Network Resonant DC–DC Converter with Optimized Startup Control” IEEE Transaction on Industry Applications, Vol. 53, no. 4, pp. 783-791, 2017.##
[28]      B. R. Lin, C. Y. Ho, J. T. Liao and W. J. Lin, “Half-Bridge ZVS Converter with Three Resonant Tanks” 9th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2014.##
  • Receive Date: 02 August 2020
  • Revise Date: 19 December 2020
  • Accept Date: 04 January 2021
  • Publish Date: 21 December 2020