Fast Parametric ISAR Autofocus Algorithm Based on Entropy and Eigenvalue Decomposition

Document Type : Original Article

Author

Shiraz University

Abstract

In this paper, a fast-parametric method for ISAR autofocus is proposed which is based on the minimum entropy method and eigenvalue decomposition, and has less computational complexity than that of conventional autofocus methods. In this technique, the covariance matrix of the range compressed and aligned data is formed and by utilizing eigenvalue decomposition, signal and noise are separated. Then, the Fourier transform of the signal eigenvectors which are much smaller than the total eigenvectors is taken. Finally, by applying the conventional autofocus approaches to the image of eigenvectors, the phase error is estimated. In this paper, a parametric method based on entropy is utilized. The simulation results show that although the computational complexity is decreased, the performance of the algorithm is maintained.

Keywords


 
   [1]      H. R. Hashempour, M. A. Masnadi-Shirazi, and A. Sheikhi, “Cyclic prefix-based OFDM ISAR imaging,” Iranian J. Sci. Technol., Trans. Elect. Eng., vol. 42, no. 2, pp. 239–249, 2018.##
   [2]      H. R. Hashempour and M. A. Masnadi-Shirazi, “Inverse synthetic aperture radar phase adjustment and cross-range scaling based on sparsity,” Digit. Signal Process., vol. 68, pp. 93–101, Sep. 2017.##
   [3]      H. R. Hashempour, M. A. Masnadi-Shirazi, and B. A. Arand, “Compressive sensing ISAR imaging with LFM signal,” In Proc. Iranian Conf. Electr. Eng. (ICEE), Tehran, Iran, pp. 1869–1873, May 2017.##
   [4]      B. Haywood and R. J. Evans, “Motion compensation for ISAR imaging,” In Proc. ASSPA 89, Adelaide, Australia, pp. 113–117, April 1989.##
   [5]      D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, “Phase gradient autofocus-a robust tool for high resolution SAR phase correction,” IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 3, pp. 827-835, July 1994.##
   [6]      R. P. Bocker, T. B. Henderson, S. A. Jones, and B. R. Frieden, “A new inverse synthetic aperture radar algorithm for translational motion compensation,” Proc. SPIE, vol. 1569, pp. 298–310, 1991.##
   [7]      L. Xi, L. Giosui, and J. Ni, “Autofocusing of ISAR images based on entropy minimisation,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 4, pp. 1240-1252, Oct. 1999.##
   [8]      J. Wang, X. Liu, and Z. Zhou, “Minimum-entropy phase adjustment for ISAR,” IEE Proc.-Radar, Sonar Navigat., vol. 151, no. 4, pp. 203–209, Aug. 2004.##
   [9]      F. Berizzi and G. Corsini, “Autofocusing of inverse synthetic aperture radar images using contrast optimization,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 3, pp. 1185-1191, July 1996.##
[10]      F. Berizzi and G. Corsini, “Focusing of two dimensional ISAR images of objects by contrast maximization,” Proc. Microw. Conf., Helsinki, Finland, pp. 951–956, August 1992.##
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[11]      M. Martorella, F. Berizzi, and B. Haywood, “A contrast maximization based technique for 2D ISAR autofocusing,” Proc. Inst. Elect. Eng. Radar, Sonar Navig., vol. 152, no. 4, pp. 253262, Aug. 2005.
[12]      C. V. Jakowatz, Jr., and D. E. Wahl, “Eigenvector method for maximum-likelihood estimation of phase errors in synthetic-aperture radar imagery,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 10, no. 12, pp. 2539–2546, Oct. 1993.
[13]      J. Duan, L. Zhang, and M. Xing, “A weighted eigenvector autofocus method for sparse-aperture ISAR imaging,” EURASIP J. Adv. Signal Process., vol. 2013, pp. 1–9, 2013.
[14]      S.-H. Lee, J.-H. Bae, M.-S. Kang, and K.-T. Kim, “Efficient ISAR autofocus technique using eigenimages,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 2, pp. 605–616, Feb. 2017.
[15]      S. Press WH et al, “Numerical recipes: the art of scientific computing,” Cambridge University Press, New York, pp. 120–122, 1987.