[1] P. S. Kildal, E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett., vol. 8, pp. 84–87, 2009.
[2] P.-S. Kildal, “Erratum: Definition of artificially soft and hard surfaces for electromagnetic waves,” Electron. Lett., vol. 24, no. 6, p. 366, 1988.
[3] E. Alfonso, et al., “New waveguide technology for antennas and circuits,” Waves, year 3, pp. 65-75, 2011.
[4] B. Ahmadi and A. Banai, “Substrateless Amplifier Module Realized by Ridge Gap Waveguide Technology for Millimeter-Wave Applications,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 11, pp. 3623–3630, 2016.
[5] B. Ahmadi and A. Banai, “A power divider/combiner realized by ridge gap waveguide technology for millimeter wave applications,” Conf. Millimeter-Wave Terahertz Technol. MMWaTT, pp. 5–8, 2017.
[6] S. I. Shams and A. A. Kishk, “Wide band power divider based on Ridge gap waveguide,” 2016 17th Int. Symp. Antenna Technol. Appl. Electromagn. ANTEM 2016, pp. 3–4, 2016.
[7] B. Ahmadi and A. Banai, “Direct Coupled Resonator Filters Realized by Gap Waveguide Technology,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 10, pp. 3445–3452, 2015.
[8] P.-S. Kildal, A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and A. Valero-Nogueira, “Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression,” IET Microwaves, Antennas Propag., vol. 5, no. 3, p. 262, 2011.