SNR Improvement in Semi-active Tracking Radar Using Signal Parameters Estimation

Authors

Abstract

In  continuous  wave  (CW)  radar  systems,  the  efficiency  of  semi-active  chaser  receiver  in  the
tracking  of  target  is  of  paramount  importance.  In  a  situation  where  the  target  and  chaser  have
variable  speed  (accelerated  motion)  relative  to  one  another,  in  the  semi-active  chaser  receiver,
the received signal has time varying Doppler frequency shifts. In this paper, semi-active receiver
with  hierarchical  features  first  acquires  an  estimation  of  the  parameters  of  the  received  signal
using the short time-frequency transform (STFT) at the time of the acceleration of the target or
chaser. Then, mono-pulse angular tracking accuracy is tested using a matched filter based on the  
estimated  parameters  of  the  received  signal.  Eventually,  providing  the  required  simulation,  the
proposed method is compared with “maximum signal spectrum” and “average signal spectrum”
methods.  The  results  imply  that  the  matched  filter-based  algorithm  has  a  better  performance
than other algorithms.

Keywords


[1]G. M. Kirkpatric, “Development of a monopulse radar system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2, pp. 807-818, Apr. 2009.##
[2]E. Mosca, “Angle estimation in amplitude comparison monopulse systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-5, no. 2, pp. 205-212, 1969.##
[3]S. M. Sherman, “Monopulse Principle and Techniques,” Norwood, MA: Artech House, 1984.##
[4]W. D. Blair, and M. Brandt-pearce, “Statistical description of monopulse for tracking Rayleigh targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 2, pp. 597-611, Apr. 1998.##
[5]W. D. Blair and M. Brandt-pearce, “Monopulse DOA estimation of two unresolved Rayleigh targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 2, pp. 452-469, Apr. 2001.##
[6]A. Sinha, “Radar measurement extraction in presence of sea-surface multipath,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 2, pp. 550-567, Apr. 2003.##
[7]R. O. Nielsen, “Accuracy of angle estimation with monopulse processing using two beams,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1419-1423, Oct. 2001.##
[8]U. Nickel, E. Chaumette, and P. Larzabal, “Statistical performance prediction of generalized monopulse estimation,” IEEE Aerospace and Electronic Magazine, vol. 47, no. 1, pp. 381-404, Jan. 2011.##
[9] R. O. Nielsen, “Accuracy of angle estimation with monopulse processing using two beams,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, no. 4, pp. 1419-1423, Oct. 2001.##
[10]E. Chaumette and P. Larzabal, “Monopulse-radar tracking of Swerling III-IV targets using multiple observations,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 2, pp. 520-537, Apr. 2008.##
[11]J. Galy, “Joint detection estimation problem of monopulse angle measurement”. IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 1 pp. 397-412, Jan. 2010.##
[12]J. Z. Wang, S. Y. Su, and Z. P. Chen, “Parameter estimation of chirp signal under low SNR,” Sci. China Inf. Sci., 2015.##
[13]C. S. Pang, L. Liu, and T. Shan, “Time-frequency analysis method based on short-time fractional Fourier transform,” Acta Electron Sin, vol. 42, pp. 347-352, 2014.##
[14]C. S. Pang, “An accelerating target detection algorithm based on DPT and fractional Fourier transform,” Acta Electron Sin, vol. 40, pp. 184-188, 2012.##
[15]S. Peleg and B. Porat, “The Cram&-Rao lower bound for signals with constant amplitude and polynomial phase,” IEEE Trans. Signal Processing, vol. 39, pp. 749-752, Mar. 1991.##
Volume 5, Issue 4 - Serial Number 4
September 2018
Pages 49-60
  • Receive Date: 15 May 2017
  • Revise Date: 26 February 2019
  • Accept Date: 19 September 2018
  • Publish Date: 21 January 2018