Investigation of Performance Changes of Leaky Wave Antennas in the Aerodynamic Heating Phenomenon of Hypersonic Projectiles

Authors

Abstract

In  this  study,  the  effect  of  aerodynamic  heating  has  been  investigated  on  the  performance  of
leaky wave antennas in hypersonic projectiles. For this purpose, first the projectile’s surface
temperature  is  obtained  using  aerodynamic  simulations.  Then,  with  thermal  simulation  of  the
leaky  wave  antenna  designed  in  the  X    frequency  band,  its  temperature  is  calculated  with  the
assumption  that  the  upper  surface  of  the  antenna  lies  on  the  exterior  surface  of  the  projectile.
The next step is to investigate the changes in antenna’s performance by studying the changes in
its shape and the properties of its materials. The most significant change in the performance  is
observed for the S11 parameter, which has a frequency shift of around 140 MHz at 1880 Kelvin.
Finally, changes of the main beam direction as well as the level of the first sidelobe have been
studied with respect to temperature changes

Keywords


   [1]C .Balanis, “A Antenna theory: analysis and design,” John Wiley & Sons, 2016.##
   [2]D.-J. Kim and L. Jeong-Hae, “Beam scanning leaky-wave slot antenna using balanced CRLH waveguide operating above the cutoff frequency,” IEEE Transactions on Antennas and Propagation, 61.5, pp. 2432-2440, 2013.##
   [3] W. Cao, et al, “A beam scanning leaky-wave slot antenna with enhanced scanning angle range and flat gain characteristic using composite phase-shifting transmission line,” IEEE Transactions on Antennas and Propagation, 62.11, pp. 5871-5875, 2014.##
   [4] P. Hudec, P. Petr, and J. Vojtech, “Multimode Adaptable Microwave Radar Sensor Based on Leaky-Wave Antennas,” IEEE Transactions on Microwave Theory and Techniques, 2017.##
   [5] Karmokar, K. Debabrata, and Y. Jay Guo, “Planar       leaky-wave antennas for low-cost radar,” Antennas and Propagation in Wireless Communications (APWC), 2017 IEEE-APS Topical Conference on. IEEE, 2017.##
   [6] S.-T. Yang and H. Ling, “Application of a microstrip leaky wave antenna for range–azimuth tracking of humans,” IEEE Geoscience and Remote Sensing Letters 10.6, pp. 1384-1388, 2013.##
   [7] A. A. Oliner and D. R. Jackson, “Leaky-wave antennas,” in Antenna Engineering Handbook, J. L. Volakis, Ed., 4th ed. New York: Mc- Graw-Hill, ch. 11, Jun. 2007.##
   [8] K. Carver, and J. Mink, “Microstrip antenna technology,” IEEE Transaction on Antennas and Propagation, vol. AP.29, no. 1, pp. 1-24, January 1981.##
   [9] S. Babu and G. Kumar, “Parametric study and temperature sensitivity of microstrip antennas using an improved linear transmission line Model,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 2, pp. 221-226, February 1999.##
[10] A. Elrashidi, K. Elleithy, and H. Bajwa, “The performance of a cylindrical microstrip printed antenna for TM10 mode as a function   of   temperature   for   different   substrates,” International Journal of Next-Generation Networks (IJNGN), vol. 3, no. 3, pp. 1-18, September 2011.##
[11] Yadav, R. Kumar, J. Kishor, and R. Lal Yadava, “Effects of temperature variations on microstrip antenna,” International Journal of Networks and Communications 3.1, pp. 21-24, 2013.##
[12] J. Liu, D. R. Jackson, and Y. Long, “Modal analysis of dielectric-filled rectangular waveguide with transverse slots,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3194–3203, Sep. 2011.##
[13]  H. F. S. S. Ansys, “v15,” ANSYS Corporation Software, Pittsburgh, PA, USA, 2014.##
[14] C. O. M. S. O. L. Multiphysics, “v. 5.2 a. www. comsol. com. COMSOL AB, Stockholm,”.##
 
Volume 5, Issue 4 - Serial Number 4
September 2018
Pages 33-38
  • Receive Date: 09 December 2017
  • Revise Date: 26 February 2019
  • Accept Date: 19 September 2018
  • Publish Date: 21 January 2018