Parameters Estimation and Imaging of Ground Moving Target in a One-stationary Bi-static SAR

Authors

Abstract

In this paper, the equation of the received signal of a moving target with constant acceleration in
a special case of  Bi-static SAR, named one-stationary, is derived in  a slant range plane.  In the
one-stationary  geometry,  usually  range  curvature  and  Doppler  ambiguity  is  very  large  due  to
wide  beam-width  and  assumption  of  accelerating  movement  of  the  target.  Hence,  transforms
such  as  Radon  and  Keystone  have  little  accuracy  for  both  estimating  Doppler  centroid  and
removing range cell migration. In this paper, a two-step algorithm is proposed for estimation of
Doppler  centroid.  That  is  a  combination  of  radon  transform  and  a  search  algorithm.  Then,  by
extraction of a system of equations, an estimation of target’s velocity and acceleration is
obtained and finally, an image formation algorithm is presented. Compared to usual algorithms,
the accuracy of the derived equations and the strength of the proposed algorithm in the presence
of noise and clutter are confirmed by simulations.

Keywords


 
[1] D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, “Developments in radar imaging,” IEEE Transactions on Aerospace and Electronic Systems, vol. 4, pp. 363-400, 1984.##
[2] M. Soumekh, “Synthetic aperture radar signal processing, ” New York: Wiley, 1999.##
[3] R. K. Raney, “Synthetic aperture imaging radar and moving targets,” IEEE Transactions on Aerospace and Electronic Systems, pp. 499-505, 1971.##
[4] J. K. Jao, “Theory of synthetic aperture radar imaging of a moving target,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, pp. 1984-1992, 2001.##
[5]  Soumekh, “Moving target detection and imaging using an X band along-track monopulse SAR,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, pp. 315-333, 2002.##
[6] Wang and X. Liu, “Velocity estimation of moving targets in SAR imaging,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, pp. 1543-1549, 2014.##
[7]  S. R. S. Hashemi, S. Bayat, and M. M. Nayebi, “Ground-based moving target imaging in a circular strip-map synthetic aperture radar,” in Synthetic Aperture Radar (APSAR), 2015 IEEE 5th Asia-Pacific Conference on, pp. 835-840, 2015.##
[8] W.-Q. Wang, “Multi-antenna synthetic aperture radar,” CRC Press, 2013.##
[9]  V. C. Chen and H. Ling, “Time-frequency transforms for radar imaging and signal analysis,” Artech House, 2002.##
[10] M. Cherniakov, “Bistatic radars: Emerging technology,” John Wiley & Sons, 2008.##
[11] M. Antoniou, M. Cherniakov, and C. Hu, “Space-surface bistatic SAR image formation algorithms,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 1827-1843, 2009.##
[12] X. Qiu, C. Ding, and D. Hu, “Bistatic SAR data processing algorithms,” John Wiley & Sons, 2013.##
[13] M. Cherniakov, “Bistatic radar: principles and practice,” Wiley [Imprint], 2007.##
[14] R. Bamler and H. Runge, “PRF-ambiguity resolving by wavelength diversity,” IEEE Transactions on Geoscience and Remote Sensing, vol. 29, pp. 997-1003, 1991.##
[15]  I. G. Cumming and F. H. Wong, “Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation,” Artech House, 2005.##
[16] C. Cafforio, P. Guccione, and A. M. Guarnieri, “Doppler centroid estimation for ScanSAR data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, pp. 14-23, 2004.##
[17]  Y.-K. Kong, B.-L. Cho, and Y.-S. Kim, “Ambiguity-free Doppler centroid estimation technique for airborne SAR using the Radon transform,” IEEE transactions on geoscience and remote sensing, vol. 43, pp. 715-721, 2005.##
[18] Y. Li, P. Huang, Z. Yang, and C. Lin, “Parameter estimation and imaging of moving targets in bistatic synthetic aperture radar,” Journal of Applied Remote Sensing, vol. 10, pp. 015018-015018, 2016.##
[19]  R. P. Perry, R. C. DiPietro, and R. L. Fante, “SAR imaging of moving targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, pp. 188-200, 1999.##
[20]  W. Li, J. Yang, Y. Huang, and J. Wu, “A geometry-based Doppler centroid estimator for bistatic forward-looking SAR,” IEEE Geoscience and Remote Sensing Letters, vol. 9, pp. 388-392, 2012.##
[21]  S. Zhu, G. Liao, H. Tao, and Z. Yang, “Estimating Ambiguity-Free Motion Parameters of Ground Moving Targets From Dual-Channel SAR Sensors,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, pp. 3328-3349, 2014.##
[22]  R. Klemm, “Applications of space-time adaptive processing,” IET, vol. 14, 2004.##
[23] X. Li, G. Bi, S. Stankovic, and A. M. Zoubir, “Local polynomial Fourier transform: A review on recent developments and applications,” Signal Processing, vol. 91, pp. 1370-1393, 2011.##
[24]  Y. Jungang, H. Xiaotao, J. Tian, J. Thompson, and Z. Zhimin, “New approach for SAR imaging of ground moving targets based on a keystone transform,” IEEE Geoscience and Remote Sensing Letters, vol. 8, pp.     829-833, 2011.##
[25]  S. M. Zabihi-Maddah and S. A. Seyedin, “Estimation of Ground Moving Target Parameters in Squint Single-Antenna Synthetic Aperture Radar,” Radar vol. 13, pp. 49-63, 2017(In Persian).##
[26]  V. C. Chen and M. Martorella, “Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications,” Institution of Engineering and Technology, 2014.##
[27]  J. Yang, C. Liu, and Y. Wang, “Imaging and parameter estimation of fast-moving targets with single-antenna SAR,” IEEE Geoscience and Remote Sensing Letters, vol. 11, pp. 529-533, 2014.##
Volume 5, Issue 4 - Serial Number 4
September 2018
Pages 11-24
  • Receive Date: 14 May 2017
  • Revise Date: 26 February 2019
  • Accept Date: 19 September 2018
  • Publish Date: 21 January 2018