Parameter estimation is an important task in the modeling, classification, and detection of radar clutters. Radar clutters have stochastic characteristics. Therefore, Statistical distributions are usually used to describe the features of clutters better. K distribution is one of the most common models utilized to the simulation of clutters. This distribution, which consists of scale and shape parameters, has two speckle and local power components. Because local power component is modeled by gamma distribution, the parameter estimation of K distribution is a high dimensional and nonlinear problem. In this paper, a novel method is proposed based on the gravity searching algorithm for the parameter estimation. This new method has high accuracy and validity in estimating parameters. For the evaluation of the proposed method, the estimated probability density function and power spectrum in two different experiments were compared to actual ones. Finally, the results of the new method are compared to the results of the maximum likelihood method. Furthermore, K-S test is performed to evaluate generated clutters with estimated parameters. Results prove the validity of the proposed method for the parameter estimation.
G. Li, B. Yu, âModelling And Simulation Of Coherent Weibull Clutter,â IEEE Proceedings of Radar and Signal Processing, vol. 136, no.3, pp. 2â12, 1989.
B. Wang, J. Wang, D. Wang, J. Zhang, âClutter Modeling and Analysis Based On ZMNL Method,â Journal of Theoretical and Applied Information Technology, vol. 45, no. 2, pp.3-20, 2012.
K. D. Ward, R. J. A. Tough, S.Watts, âSea Clutter: Scattering, the K Distribution and Radar Performance,â Waves in Random and Complex Media, vol. 17, no. 2, pp.233â234, 2007.
T.K. Moon, W.C. Stirling, âMathematical Methods and Algorithm for Signal Processingâ, Prentice-Hall, 2000.
I. R. Joughin, D. B. Percival, D. P. Winebrenner, âMaximum Likelihood Estimation of K Distribution Parameters for SAR data,â Geoscience and Remote Sensing, IEEE Transactions on, vol. 31, no. 5, pp. 989â999, 1993.
F. Gini, M. Montanari, L. Verrazzani, âMaximum likelihood, ESPRIT, and Periodogram Frequency Estimation of Radar Signals in K-distributed Clutter,â Signal processing, vol. 80, no. 6, pp. 1115â1126, 2000.
R. S. Raghavan, âA Method for Estimating Parameters of K-distributed Clutter,â Aerospace and Electronic Systems, IEEE Transactions on, vol. 27, no. 2, pp. 238â246, 1991.
A. Davari, M. H. Marhaban, S. B. M. Noor, M. Karimadini, A. Karimoddini, âParameter Estimation of K-distributed Sea Clutter Based on Fuzzy Inference and GustafsonâKessel Clustering,â Fuzzy Sets and Systems, vol. 163, no. 1, pp. 45â53, 2011.
M. H. Marhaban, âEstimation of KâDistributed Clutter by Using Characteristic Function Method,âJournal Technology, Vol. 48, No. 1, pp. 29â40, 2012.
M. P. Wachowiak, R. Smolikova, J. M. Zurada, A. S. Elmaghraby, âEstimation of K Distribution Parameters Using Neural Networks,â IEEE Transactions on Biomedical Engineering, vol. 49, no. 6, pp. 617â620, 2002.
D. R. Iskander, A. M. Zoubir, B. Boashash, âA Method for Estimating the Parameters of the K-Distribution,â IEEE Transactions on Signal Processing, vol. 47, no. 4, pp. 1147â1151, 1999.
D. Blacknell and R. J. A. Tough, âParameter Estimation for the K-distribution Based on [z log (z)],â IEEE Proceedings-Radar, Sonar and Navigation, vol. 148, No. 6, pp. 309â312, 2001.
E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, âGSA: a Gravitational Search Algorithm,â Information sciences, vol. 179, no. 13, pp. 2232â2248, 2009.
H. Yanhui, L. Feng, Z. Baobao, W. Shunjun, âSimulation of Coherent Correlation K-distribution Sea Clutter Based on SIRP,â CIE. Of the Int. Conf. on Radar, 2006, pp. 1â4.
A. Papoulis,â Probability, Random Variables and Stochastic Processesâ, McGraw-Hill Inc, pp. 272, Second Edition, 1991.
L. Yunlong, X. Chao, Z. Hongzhong, F. Qiang, âModeling and Simulation of Correlated K-Distributed Sea Clutter Based on ZMNL,â in Proc. of the Int. Conf. on Signal Processing Systems (ICSPS), 2011.
J. Ward, D. Keith, S. Watts, R.Tough, âSea Clutter: Scattering, the K Distribution and Radar Performance,â IET, vol. 20, pp 20-26, 2006.
Ebrahim Zadeh, A., & Akhondi, M. (2016). Parameter Estimation of K Distribution Radar Clutter with the Gravity Searching Algorithm. Radar, 4(3), 55-65.
MLA
Ataollah Ebrahim Zadeh; Mohammad Akhondi. "Parameter Estimation of K Distribution Radar Clutter with the Gravity Searching Algorithm", Radar, 4, 3, 2016, 55-65.
HARVARD
Ebrahim Zadeh, A., Akhondi, M. (2016). 'Parameter Estimation of K Distribution Radar Clutter with the Gravity Searching Algorithm', Radar, 4(3), pp. 55-65.
VANCOUVER
Ebrahim Zadeh, A., Akhondi, M. Parameter Estimation of K Distribution Radar Clutter with the Gravity Searching Algorithm. Radar, 2016; 4(3): 55-65.