SAR Speckle Reduction and Image Reconstruction Using Compressed Sensing

Document Type : Original Article

Authors

Abstract

Speckle noise seriously degrades the quality of SAR images and complicates the image
exploitation using automated image analysis techniques. Recently, the application of
compressed sensing (CS) is explored in the SAR signal processing. In this paper, first, a linear
model is derived for speckled SAR data. Then, using this model and the compressed sensing
theory, a speckle reduction method is proposed. In the proposed method, the image backgrounds as well as the bright point targets are also reconstructed together with noise reduction. The important feature of the proposed method is the joint noise reduction simultaneous with the SAR image formation. Moreover, using simulated and real SAR images, the performance of the proposed method in noise reduction and preserving image features is evaluated and compared to the performance of some de-noising approaches.

Keywords


  1. A. Moreira, P. Prats-iraola, M. Younis, G. Krieger, I.
  2. Hajnsek, and K. P. Papathanassiou, “A Tutorial on
  3. Synthetic Aperture Radar,” IEEE Geosci. Remote
  4. Sensing Mag., Vol. 1, No. 1, pp. 6-43, 2013.
  5. J. W. Goodman, “Some Fundamental Properties of
  6. Speckle,” Journal of the Optical Society of America,
  7. Vol. 66, No. 11, pp. 1145-1150, 1976.
  8. S. Joseph, K. Balakrishnan, M. B. Nair, and R. R.
  9. Varghese, “Ultrasound Image Despeckling using
  10. Local Binary Pattern Weighted Linear Filtering,”
  11. International Journal of Information Technology and
  12. Computer Science, Vol. 5, No. 6, pp. 1-9, 2013.
  13. A. Moreira, “An Improved Multilook Technique to
  14. Produce SAR Imagery,” In Proc. of the IEEE Int.
  15. radar conf., 1990, 57-63.
  16. F. P. Devries, “Speckle Reduction in SAR Imagery
  17. by various Multi-look Techniques,” Netherlands
  18. Organization for Applied Scientific Research (TNO),
  19. Report. FEL-96-A015, 1998.
  20. F. Argenti, A. Lapini, and L. Alparone, “A Tutorial
  21. on Speckle Reduction in Synthetic Aperture Radar
  22. Images,” IEEE Geoscience and Remote Sensing
  23. Magazine, Vol. 1, No. 3, pp. 6-35, 2013.
  24. S. M. Kay, “Fundamentals of Statistical Processing,”
  25. Volume I: Estimation Theory, Englewood Cliffs, NJ:
  26. Prentice Hall, 1993.
  27. A. Lopès, R. Touzi, and E. Nezry, “Adaptive Speckle
  28. Filters and Scene Heterogeneity,” IEEE Transactions
  29. on Geoscience and Remote Sensing, Vol. 28, No. 6,
  30. pp. 992-1000, 1990.
  31. A. Rajamani and V. Krishnaveni, “Performance
  32. Analysis Survey of various SAR Image Despeckling
  33. Techniques,” Internatinal Journal of Computer
  34. Applications, Vol. 90, No. 7, pp. 5-17, 2014.
  35. A. Lopès, E. Nezry, R. Touzi, and H. Laur,
  36. “Maximum A Posteriori Speckle Filtering and First
  37. Order Texture Models in SAR Images,” In Proc. of
  38. the IEEE Int. Geosci. Remote Sensing Symp., 1990,
  39. -2412.
  40. A. Buades, B. Coll, and J. M. Morel, “A Non-Local
  41. Algorithm for Image Denoising,” In Proc. of the
  42. IEEE Conf. Computer Vision and Pattern
  43. Recognition, 2005, 60–65.
  44. G. Aubert and J. Aujol, “A Variational Approach to
  45. Removing Multiplicative Noise,” SIAM Journal on
  46. Applied Mathematics, Vol. 68, No. 4, pp. 925–946,
  47.  
  48. C. A. Deledalle, L. Denis and F. Tupin, “Iterative
  49. Weighted Maximum Likelihood Denoising with
  50. Probabilistic Patch-Based Weights,” IEEE
  51. Transactions on Image Processing, Vol. 18, No. 12,
  52. pp. 2661-2672, 2009.
  53. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian,
  54. “Image Denoising by Sparse 3D Transform-domain
  55. Collaborative Filtering,” IEEE Transactions on
  56. Image Processing, Vol. 16, No. 8, pp. 2080–2095,
  57.  
  58. E. O. Brigham and E. O. Brigham, “The Fast Fourier
  59. Transform and its Applications, Volume I,
  60. Englewood Cliffs, NJ: Prentice Hall, 1988.
  61. A. Khmag, A. R. Ramli, and S. A. R. Al-Haddad,
  62. Hashim, S. J. B., “Additive and Multiplicative noise
  63. Removal based on Adaptive Wavelet Transformation
  64. using Cycle Spinning,” American Journal of Applied
  65. Sciences, Vol. 11, No. 2, pp. 316-328, 2014.
  66. H. H. Arsenault and M. Levesque, “Combined
  67. Homomorphic and Local Statistics Processing for
  68. Restoration of Images Degraded by Signal
  69. Dependent Noise,” Applied optics, Vol. 23, No. 6,
  70. pp. 845-850, 1984.
  71. A. Y. Carmi, L. Mihaylovam, and S. J Godsill,
  72. “Compressed Sensing and Sparse Filtering,” New
  73. York: Springer, 2014.
  74. J. Fang, Z. Xu, B. Zhang, W. Hong, and Y. Wu,
  75. “Fast Compressed Sensing SAR Imaging Based on
  76. Approximated Observation,” IEEE Journal of
  77. Selected Topics in Applied Earth Observations and
  78. Remote Sensing, pp. 1-12, 2014.
  79. H. Li, H. Du and W. Mei, “A Speckle Suppression
  80. SAR Imaging Method Based on Compressive
  81. Sensing,” In Proc. of the Int. Cong. Image and Signal
  82. Process., 2012, 283-287.
  83. I. M. Chen, J. Yang, W. P. Wang, and B. Sun, “SAR
  84. Image Despeckling by Selective 3D Filtering of
  85. Multiple Compressive Reconstructed Images,” Progress in Electromagnetics Research, Vol. 134, pp.
  86. -226, 2013.
  87. H. Zhao, J. F. Lopez, S. Li, Y. Cao, and Z. Qiao,
  88. “Noise synthetic aperture radar (SAR) imagery
  89. compressing and reconstruction based on compressed
  90. sensing,” In SPIE Defense, Security, and Sensing,
  91. Int. Soc. Optics and Photonics, pp. 87500N-87500N,
  92. May 2013.
  93. L. Guo and X.Wen, “SAR Image Compression and
  94. Reconstruction based on Compressed Sensing,” J.
  95. Inf. and Computational Sci., vol. 11, no. 2, pp. 573-
  96. , 2014.
  97. M. Cetin, I. Stojanovic, N. O. Onhon, K. Varshney,
  98. R. Samadi, S. Karl, W. C, and A. S. Willsky,
  99. “Sparsity-driven Synthetic Aperture Radar Imaging:
  100. Reconstruction, Auto-focusing, Moving Targets, and
  101. Compressed Sensing,” IEEE Signal Process. Mag.,
  102. vol. 31, no. 4, pp. 27-40, Jul. 2014.
  103. A. Chatterjee and H. N. Moulick, “Image Filtering
  104. Noise Removal with Speckle Noise,” Int. J. Ethics in
  105. Eng. Manage. Educ. (IJEEE), pp. 21-26, Mar. 2014.
  106. S. Samadi, M. Çetin, and M. A. Masnadi-Shirazi,
  107. “Sparse Representation-based Synthetic Aperture
  108. Radar Imaging,” IET Radar, Sonar & Navigation,
  109. vol. 5, no 2, pp. 182-193, 2011.
  110. S. Roucart, “Sparse Recovery Algorithms: Sufficient
  111. Conditions in terms of Restricted Isometry
  112. Constants,” In Approximation Theory XIII: San
  113. Antonio 2010, Springer New York, pp. 65-77, 2012.
  114. S. Uḡur and O. Arıkan, “SAR Image Reconstruction
  115. and Autofocus by Compressed Sensing,” Digital
  116. Signal Process., vol. 22, no. 6, pp. 923-932, 2012.
  117. S. S. Chen, D. L., Donoho, M. A. Saunders, “Atomic
  118. Decomposition by Basis Pursuit,” SIAM Review,
  119. vol. 43, no. 1, pp. 129-159, 2001.
  120. S. Bahmani, B. Raj, and P. T. Boufounos, “Greedy
  121. Sparsity-constrained Optimization,” J. Mach.
  122. Learning Research, vol. 14, no.1, pp. 807-841, 2013.
  123. T. Blumensath, M. Yaghoobi, and M. Davies,
  124. “Iterative Hard Thresholding and L0 Regularization,”
  125. In Proc. IEEE int. conf. acoust. speech and signal
  126. process., pp. III-877–III-880, 2007.
  127. J. A. Tropp and A. C. Gilbert, “Signal Recovery
  128. From Random Measurements via Orthogonal
  129. Matching pursuit,” IEEE Trans. Inf. Theory, vol. 53,
  130. no. 12, pp. 4655–4666, Dec. 2007.
  131. D. L. Donoho, “Denoising by Soft-Hresholding,”
  132. EEE Trans. Inf. Theory, vol. 41, no. 3, pp. 613-627,
  133.  
  134. M. Mansourpour, M. A. Rajabi, and J. A. R. Blais,
  135. “Effects and Performance of Speckle Noise
  136. Reduction Filters on Active Radar and SAR Images,”
  137. Int. Soc. Photogrammetry and Remote Sensing
  138. (ISPRS), pp. 14-16, Feb. 2006.
  139. I. M. R. De Leeuw and L. M. T. D. Carvalho,
  140. “Performance Evaluation of several Adaptive
  141. Speckle filters for SAR imaging,” Simposio
  142. Brasileiro de Sensoriamento Remoto (SBSR), vol.
  143. , no. 2, pp. 7299-7305, Apr. 2009.
  144. M. Schlutz, “Synthetic Aperture Radar Imaging
  145. Simulated in MATLAB. Master’s of Science Thesis
  146. in Geodesy Report,” California polytechnic state
  147. university, San Luis Obispo, 2009.